Spelling suggestions: "subject:"[een] SODIUM SILICATE"" "subject:"[enn] SODIUM SILICATE""
21 |
REUTILIZAÇÃO DE AREIA A VERDE DESCARTADA DE FUNDIÇÃO LIGADA COM Na2SiO3.XH2O/CO2 NA PREPARAÇÃO DE MOLDES NÃO PERMANENTESSouza, Josiane Carneiro 19 December 2012 (has links)
Made available in DSpace on 2017-07-21T20:42:39Z (GMT). No. of bitstreams: 1
Josiane Carneiro Souza.pdf: 4154319 bytes, checksum: dcde979ba587a2471aa62c75df7e7827 (MD5)
Previous issue date: 2012-12-19 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / The manufacture of metal parts by molding and molded by the process in the green sand (sand base crowded with clay) is widespread in industries for its low cost and operational flexibility. A major advantage is that the materials can be reused in new molding cycles. However, when the liquid metal comes in contact with the mold, causes disabling clay locally, generating inert materials that focus on the sand and limit long cycles of reuse. Thus, there are surplus sands by adding new primary materials and the consequent need for disposal to maintain the constant flow of materials. This excess is a liability that is usually discarded in landfills. This study sought a solution to this environmental waste, by reuse in the actual molding process using the sodium silicate (Na2SiO3.XH2O)/CO2, as binder. The properties obtained from samples with waste foundry sands (WFS) and with the new green sands were compared to verify the real potential for reuse WFS and the effect of its inert components and additives. For this purpose it was evaluated the mechanisms involved in the interaction with the green sand silicate before and after reaction with CO2 in the range of 0 to 20% (by weight) mixed. Mechanical properties were evaluated before and after gassing with CO2, both with WFS and with its primary components. In this study, for microstructural characterization techniques were used for X-ray diffraction, optical microscopy and MEV/ EDS. The results showed mutually dependent mechanical properties, the morphology of the silica gel coating on the sand grains, and the composition of the mixture used. / A fabricação de peças metálicas por fundição e moldadas pelo processo em areias a verde (areia base aglomerada com argila) é bastante difundida nas indústrias pelo seu baixo custo e flexibilidade operacional. Uma das grandes vantagens é que os materiais utilizados podem ser reutilizados em novos ciclos de moldagem. Porém, quando o metal líquido entra em contato com o molde, provoca a desativação da argila localmente, gerando materiais inertes que se concentram na areia e limitam ciclos longos de reuso. Com isto, surgem excedentes de areias pela adição de materiais primários novos e a consequente necessidade de descarte para manter o fluxo constante de materiais. Este excedente é um passivo que normalmente é descartado em aterros. Este trabalho buscou uma solução ambiental para este resíduo, por meio da reutilização no próprio processo de moldagem, utilizando silicato de sódio (Na2SiO3.XH2O)/CO2, como ligante. As propriedades obtidas de amostras com areias descartadas e com as areias a verde novas foram comparadas entre si para verificar o real potencial de reutilização da ADF e o efeito de seus componentes inertes e aditivos. Para esta finalidade avaliou-se os mecanismos envolvidos na interação da areia a verde com o silicato, antes a após reação com CO2, na faixa entre 0 a 20% (em peso) nas misturas. Propriedades mecânicas foram avaliadas antes e após a gasagem com o CO2, tanto com areia descartada de fundição (ADF) quanto com os seus componentes primários. Neste estudo, para caracterização microestrutural foram utilizadas técnicas de Difração de raios X, Microscopia Ótica e Microscopia Eletrônica de Varredura/EDS. Os resultados demonstraram dependência mútua entre as propriedades mecânicas; a morfologia do recobrimento da sílica gel sobre os grãos de areia; e a composição da mistura utilizada.
|
22 |
Avalia??o da adi??o de Nanos?lica e silicato de s?dio em pastas de cimento para po?os de petr?leo com baixo gradiente de fraturaQueiroz J?nior, Manoel Ivany de 27 May 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:08Z (GMT). No. of bitstreams: 1
ManoelIQJ_DISSERT.pdf: 1658589 bytes, checksum: 30023fa8ec2e11231777b5b0249ad3cc (MD5)
Previous issue date: 2013-05-27 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry / A cimenta??o de po?os de petr?leo ? uma das etapas mais criticas durante a fase de perfura??o de um po?o, pois problemas durante a opera??o de bombeio da pasta e um preenchimento incompleto do espa?o anular, entre o revestimento e a parede do po?o, podem causar a perda do mesmo. Portanto, a pasta adotada na cimenta??o prim?ria de um po?o de petr?leo deve ser calculada adequadamente para que sejam evitados estes problemas durante seu bombeamento. Ao se perfurar um po?o em uma forma??o rochosa fraca requer-se, ainda, mais cuidado, pois, em geral, deve existir um limite de press?o hidrost?tica exercida durante a cimenta??o, para que n?o haja o colapso da forma??o. Com o objetivo de se realizar a cimenta??o de um po?o cuja forma??o ? fraca ou inconsolidada s?o empregadas pastas leves. Desta forma, neste trabalho foram utilizadas pastas com silicato de s?dio e nano s?lica em concentra??es de 0,1; 0,4; 0,7 e 1,0 gpc, onde as pastas com nano s?lica apresentaram os par?metros reol?gicos superiores at? a concentra??o de 0,7 gpc e para a concentra??o de 1,0 gpc a pasta com silicato de s?dio obteve os maiores valores, ficando acima dos limites estabelecidos para aplica??o em campos, principalmente em po?os com baixo gradiente de fratura, pois o aumento significativo da viscosidade pode resultar no incremento da press?o de bombeio em opera??es de recimenta??o. Al?m disto, n?o foi observado em decr?scimo de resist?ncia mec?nica com aumento de concentra??o dos aditivos. Sendo poss?vel utiliza??o destes aditivos para formula??o de pastas leves
|
23 |
Estudo da eficiência do uso da cinza de bagaço de cana-de-açúcar (cbc) como aditivo defloculante na indústria de porcelanato /Carvalho, Franciéli Caiara Rodrigues de. January 2020 (has links)
Orientador: Keizo Yukimitu / Resumo: Este trabalho visa o estudo da eficiência do uso da cinza de bagaço de cana-de-açúcar (CBC) como defloculante para materiais cerâmicos do tipo porcelanato, disponibilizada pela indústria Villagres, em comparação ao aditivo defloculante atualmente utilizado mesma, o silicato de sódio. O estudo do reaproveitamento deste material residual de origem orgânica na indústria cerâmica tem motivações que envolvem causas de disponibilidade, sustentabilidade, inovação e rentabilidade, motivações essas que, para este estudo em específico, foram fomentadas por resultados bastante promissores obtidos através de um estudo prévio envolvendo algumas destas mesmas variáveis citadas, em termos de redução do tempo de escoamento, e consequentemente, viscosidade. Materiais argilosos (argilominerais) fazem parte de grande parte da composição de massas cerâmicas. Durante o seu processo de moagem via úmida, observa-se nas argilas uma interação superficial de atração pelas forças de Van der Waals. Para que esta interação diminua e consequentemente a viscosidade da barbotina, utiliza-se aditivos defloculantes à base de sódio. O silicato de sódio é capaz de promover a troca catiônica dos cátions bivalentes. Conforme o decorrer do projeto, foram testadas diferentes formulações e metodologias nas instalações da indústria de porcelanato Villagres, com adições de silicato de sódio e/ou CBC aos materiais cerâmicos, e assim medir das viscosidades das misturas com o equipamento Copo de Ford para que fosse anali... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
24 |
Theory of Electronic Transport and Novel Modeling of Amorphous MaterialsSubedi, Kashi 24 May 2022 (has links)
No description available.
|
25 |
The Effects Of Phosphate And Silicate Inhibitors On Surface Roughness And Copper Release In Water Distribution SystemsMacNevin, David 01 January 2008 (has links)
The effects of corrosion inhibitors on water quality and the distribution system were studied. This dissertation investigates the effect of inhibitors on iron surface roughness, copper surface roughness, and copper release. Corrosion inhibitors included blended poly/ortho phosphate, sodium orthophosphate, zinc orthophosphate, and sodium silicate. These inhibitors were added to a blend of surface water, groundwater, and desalinated brackish water. Surface roughness of galvanized iron, unlined cast iron, lined cast iron, and polyvinyl chloride was measured using pipe coupons exposed for three months. Roughness of each pipe coupon was measured with an optical surface profiler before and after exposure to inhibitors. For most materials, inhibitor did not have a significant effect on surface roughness; instead, the most significant factor determining the final surface roughness was the initial surface roughness. Coupons with low initial surface roughness tended to have an increase in surface roughness during exposure, and vice versa, implying that surface roughness tended to regress towards an average or equilibrium value. For unlined cast iron, increased alkalinity and increased temperature tended to correspond with increases in surface roughness. Unlined cast iron coupons receiving phosphate inhibitors were more likely to have a significant change in surface roughness, suggesting that phosphate inhibitors affect stability of iron pipe scales. Similar roughness data collected with new copper coupons showed that elevated orthophosphate, alkalinity, and temperature were all factors associated with increased copper surface roughness. The greatest increases in surface roughness were observed with copper coupons receiving phosphate inhibitors. Smaller increases were observed with copper coupons receiving silicate inhibitor or no inhibitor. With phosphate inhibitors, elevated temperature and alkalinity were associated with larger increases in surface roughness and blue-green copper (II) scales.. Otherwise a compact, dull red copper (I) scale was observed. These data suggest that phosphate inhibitor addition corresponds with changes in surface morphology, and surface composition, including the oxidation state of copper solids. The effects of corrosion inhibitors on copper surface chemistry and cuprosolvency were investigated. Most copper scales had X-ray photoelectron spectroscopy binding energies consistent with a mixture of Cu2O, CuO, Cu(OH)2, and other copper (II) salts. Orthophosphate and silica were detected on copper surfaces exposed to each inhibitor. All phosphate and silicate inhibitors reduced copper release relative to the no inhibitor treatments, keeping total copper below the 1.3 mg/L MCLG for all water quality blends. All three kinds of phosphate inhibitors, when added at 1 mg/L as P, corresponded with a 60% reduction in copper release relative to the no inhibitor control. On average, this percent reduction was consistent across varying water quality conditions in all four phases. Similarly when silicate inhibitor was added at 6 mg/L as SiO2, this corresponded with a 25-40% reduction in copper release relative to the no inhibitor control. Hence, on average, for the given inhibitors and doses, phosphate inhibitors provided more predictable control of copper release across changing water quality conditions. A plot of cupric ion concentration versus orthophosphate concentration showed a decrease in copper release consistent with mechanistic control by either cupric phosphate solubility or a diffusion limiting phosphate film. Thermodynamic models were developed to identify feasible controlling solids. For the no inhibitor treatment, Cu(OH)2 provided the closest prediction of copper release. With phosphate inhibitors both Cu(OH)2 and Cu(PO4)·2H2O models provided plausible predictions. Similarly, with silicate inhibitor, the Cu(OH)2 and CuSiO3·H2O models provided plausible predictions.
|
26 |
Strength of Nano-Cemented Paste Backfill Cured in Iso- and Non-Isothermal ConditionsBenkirane, Othmane 20 January 2023 (has links)
One hundred billion tons of mine solid waste are estimated to be produced worldwide each year. In Canada, the mining and oil industries produce the most solid and semi-solid waste in the country, with more than a billion tons each year. In the earlier days of mining, the initial practices that were used to contain these waste materials consisted of surface storage, river dumping or just simple abandonment, while the more recent practices include dam impoundment and underground waste fill. These methods however can potentially cause environmental hazards and geotechnical problems. Against this context and as a result of stricter environmental regulations, cemented paste backfilling has been developed as a solution. This relatively new technology uses the produced waste tailings to backfill the mine stopes, greatly reducing their environmental impact while offering proper structural support in an efficient manner. However, the cost of cemented paste backfill (CPB) is greatly impacted by the binder content which can constitute up to 75% of its total cost. Additionally, the binder is usually mostly composed of ordinary Portland cement, and its production is highly energy-intensive and generates a large volume of carbon dioxide (CO₂). Indeed, it is estimated that the cement industry accounts for approximately 7% of the global anthropogenic CO₂ emissions, which is expected to increase on an annual basis. All of these factors have compelled the mining industry to seek alternatives for cement to enhance CPB strength, in hopes of reducing its carbon footprint.
Against this context, this study investigates the effect of the addition of nanoparticles, namely nano silica (SiO₂) and nano-calcium carbonate (CaCO₃), on the strength development of CPB cured at a constant room temperature and in non-isothermal conditions. Nanoparticles have been studied and used as chemical admixtures in different cementitious materials with promising results; non-isothermal curing conditions better reflect the in-situ thermal curing conditions of CPB. Thus, numerous different laboratory tests and analyses, including uniaxial compressive strength (UCS), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests, thermogravimetric/derivative thermogravimetric (TG/DTG) analyses and electrical conductivity monitoring, have been conducted on CPB samples with or without nanoparticles, and cured at room temperatures or under non-isothermal conditions. The non-isothermal conditions replicate the development of temperature in two different sizes of CPB structures in the field. The results show that CPB that contains nanoparticles show a higher UCS over the entire period of curing in all of the tested conditions. The mechanical performance is further enhanced when tested under higher temperatures in non-isothermal temperature profiles. Most of the strength increase takes place at the early ages (3 days) of the testing. The reason for the improvement in the mechanical strength is linked to accelerated binder hydration and the nucleating and filler effects of the nano-material, which is corroborated by results obtained through microstructural analyses and EC monitoring. The use of natural gold tailings affects the mechanical performance of CPB and the accelerating effect of the nanoparticles due to sulphate attacks. Overall, these promising findings can help to contribute to reducing the carbon footprint of mining activities, and improve the efficiency and cost-effectiveness of mine backfilling processes.
|
27 |
MALDI MASS SPECTROMETRY BASED ASSAYS FOR SCREENING AMINOGLYCOSIDE KINASESSmith, Anne Marie E. 04 1900 (has links)
<p>Aminoglycoside antibiotics are commonly used to treat bacterial infections but are highly susceptible to chemical modification, leading to resistance. Chemical modification can be hindered through the use of small molecule inhibitors that target bacterial enzymes involved in resistance, most notably kinases. Current methods for the discovery of small molecule inhibitors of kinases and related “kinase-like” enzymes are limited in throughput and utilize slow, tedious, and expensive assays. This thesis is focused on the development of highly versatile and scaleable kinase and “kinase-like” screening platforms for the discovery of small molecule inhibitors of these drug targets. The work begins with the validation of a matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) platform utilizing phosphorylation of kanamycin, an aminoglycoside antibiotic, by aminoglycoside phosphotransferase 3ʹIIIa (APH 3ʹIIIa) as a model system. Using a product-to-substrate signal ratio as an internal standard, the assay was used to functionally screen over 200 compounds, combined into mixtures to enhance assay throughput. Moreover, the assay was used to determine inhibitory dissocation constants for newly discovered modulators. Throughput was further increased to a novel dual-kinase assay targeting a bacterial enzyme, APH 3ʹIIIa and a human kinase, protein kinase A (PKA), which was validated using the previous small molecule library. Alternative assay development platforms were also studied using imaging mass spectrometry of reaction microarrays and the fabrication of sol-gel derived bioaffinity chromatography columns. The MS-based kinase assays developed herein are highly amenable to high throughput screening, and have the potential to be extended to other important therapeutic targets.</p> / Doctor of Philosophy (PhD)
|
28 |
Experimental Study on the Engineering Properties of GelfillAbdul-Hussain, Najlaa 29 March 2011 (has links)
Gelfill (GF) is made of tailings, water, binder and chemical additives (Fillset, sodium silicate gel). The components of GF are combined and mixed on the surface and transported (by gravity and/or pumping) to the underground mine workings, where the GF can be used for both underground mine support and tailings storage.
Thermal (T), hydraulic (H), and mechanical (M) properties are important performance criteria of GF. The understanding of these engineering properties and their evolution with time are still limited due to the fact that GF is a new cemented backfill material.
In this thesis, the evolution of the thermal, hydraulic, mechanical, and microstructural properties of small GF samples are determined. Various binder contents of Portland cement type I (PCI) are used. The GF is cured for 3, 7, 28, 90, and 120 days. It is found that the thermal, hydraulic and mechanical properties are time-dependent or affected by the degree of binder hydration index. Furthermore, a relationship is found between the compressive strength and the saturated hydraulic conductivity of the GF samples.
The unsaturated hydraulic properties of GF samples have also been investigated. The outcomes show that unsaturated hydraulic conductivity is influenced by the degree of binder hydration index and binder content, especially at low suction ranges. Simple functions are proposed to predict the evolution of air-entry values (AEVs), residual water content, and fitting parameters from the van Genuchten model with the degree of hydration index (α). Furthermore, two columns are built to simulate the coupled thermo-hydro-mechanical (THM) behaviour of GF under drained and undrained conditions. The obtained results from the GF columns are compared with the small samples. It is observed that the mechanical properties, hydraulic properties (suction and water content), and temperature development are strongly coupled. The magnitude of these THM coupling factors is affected by the size of the GF. The findings also show that the mechanical, hydraulic and thermal properties of the GF columns are different from samples cured in plastic moulds.
|
29 |
Experimental Study on the Engineering Properties of GelfillAbdul-Hussain, Najlaa 29 March 2011 (has links)
Gelfill (GF) is made of tailings, water, binder and chemical additives (Fillset, sodium silicate gel). The components of GF are combined and mixed on the surface and transported (by gravity and/or pumping) to the underground mine workings, where the GF can be used for both underground mine support and tailings storage.
Thermal (T), hydraulic (H), and mechanical (M) properties are important performance criteria of GF. The understanding of these engineering properties and their evolution with time are still limited due to the fact that GF is a new cemented backfill material.
In this thesis, the evolution of the thermal, hydraulic, mechanical, and microstructural properties of small GF samples are determined. Various binder contents of Portland cement type I (PCI) are used. The GF is cured for 3, 7, 28, 90, and 120 days. It is found that the thermal, hydraulic and mechanical properties are time-dependent or affected by the degree of binder hydration index. Furthermore, a relationship is found between the compressive strength and the saturated hydraulic conductivity of the GF samples.
The unsaturated hydraulic properties of GF samples have also been investigated. The outcomes show that unsaturated hydraulic conductivity is influenced by the degree of binder hydration index and binder content, especially at low suction ranges. Simple functions are proposed to predict the evolution of air-entry values (AEVs), residual water content, and fitting parameters from the van Genuchten model with the degree of hydration index (α). Furthermore, two columns are built to simulate the coupled thermo-hydro-mechanical (THM) behaviour of GF under drained and undrained conditions. The obtained results from the GF columns are compared with the small samples. It is observed that the mechanical properties, hydraulic properties (suction and water content), and temperature development are strongly coupled. The magnitude of these THM coupling factors is affected by the size of the GF. The findings also show that the mechanical, hydraulic and thermal properties of the GF columns are different from samples cured in plastic moulds.
|
30 |
Experimental Study on the Engineering Properties of GelfillAbdul-Hussain, Najlaa 29 March 2011 (has links)
Gelfill (GF) is made of tailings, water, binder and chemical additives (Fillset, sodium silicate gel). The components of GF are combined and mixed on the surface and transported (by gravity and/or pumping) to the underground mine workings, where the GF can be used for both underground mine support and tailings storage.
Thermal (T), hydraulic (H), and mechanical (M) properties are important performance criteria of GF. The understanding of these engineering properties and their evolution with time are still limited due to the fact that GF is a new cemented backfill material.
In this thesis, the evolution of the thermal, hydraulic, mechanical, and microstructural properties of small GF samples are determined. Various binder contents of Portland cement type I (PCI) are used. The GF is cured for 3, 7, 28, 90, and 120 days. It is found that the thermal, hydraulic and mechanical properties are time-dependent or affected by the degree of binder hydration index. Furthermore, a relationship is found between the compressive strength and the saturated hydraulic conductivity of the GF samples.
The unsaturated hydraulic properties of GF samples have also been investigated. The outcomes show that unsaturated hydraulic conductivity is influenced by the degree of binder hydration index and binder content, especially at low suction ranges. Simple functions are proposed to predict the evolution of air-entry values (AEVs), residual water content, and fitting parameters from the van Genuchten model with the degree of hydration index (α). Furthermore, two columns are built to simulate the coupled thermo-hydro-mechanical (THM) behaviour of GF under drained and undrained conditions. The obtained results from the GF columns are compared with the small samples. It is observed that the mechanical properties, hydraulic properties (suction and water content), and temperature development are strongly coupled. The magnitude of these THM coupling factors is affected by the size of the GF. The findings also show that the mechanical, hydraulic and thermal properties of the GF columns are different from samples cured in plastic moulds.
|
Page generated in 0.0542 seconds