• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 18
  • 17
  • 16
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analytical Tools for Transmission Planning Studies for Offshore Wind Farm Integration

Sajadi, Amirhossein 01 June 2016 (has links)
No description available.
22

Model-based Design of an Electronic Stability Control System for Passenger Cars Using CarSim and Matlab-Simulink

Kinjawadekar, Tejas January 2009 (has links)
No description available.
23

Development of a Vehicle Stability Control Strategy for a Hybrid Electric Vehicle Equipped With Axle Motors

Bayar, Kerem 22 July 2011 (has links)
No description available.
24

High-Speed Roll Stability Evaluation of A-Double Tractor-Trailers

Zheng, Xiaohan 03 January 2023 (has links)
The effect of center of gravity (CG) height and lateral and longitudinal off-centering on high-speed roll stability of A-double tractor trailers with 28-ft and 33-ft straight-rail and drop-frame trailers is evaluated through simulation and track testing. The changes in CG position due to the type of trailer (straight-rail vs. drop-frame) and laterally and longitudinally off-centered loads are considered. The simulation results show that imbalanced trailer loading induces roll instability and increases the likelihood of trailer rollover. Additionally, for equal loading conditions, the drop-frame trailers exhibit better roll stability than straight-rail trailers because of the lower CG. The simulation evaluation of 28-ft A-doubles is complemented with track testing of 33-ft trailers in alike (Drop-Drop and Straight-Straight) and mixed (Drop-Straight and Straight-Drop) arrangements of front and rear trailers, for various steering maneuvers that represent highway driving, such as exit ramp, obstacle avoidance, etc. The test trailers include specially designed load frames for emulating a loaded trailer in various loading conditions, outriggers for preventing trailer rollover, and durability structures for withstanding the torsional and bending moments resulting from the tests. Various sensors, including GPS, LiDAR units, accelerometers, string pots, and pressure transducers, are used, along with an onboard data acquisition (DAQ) system, for collecting the necessary data for post-analysis. Analysis of the test data indicates that the Drop-Drop configuration exhibits higher roll stability than the Straight-Straight configuration. For mixed trailers, the Drop-Straight configuration exhibits higher roll stability in exit ramps, but lower obstacle avoidance stability. Equipping the trailers with a roll stability control (RSC) system improves roll stability in terms of increasing the rollover threshold speed and tolerating more aggressive lane change steering maneuvers for A-doubles in various conditions. The RSC performance increases further when the brake application is synchronized between the two trailers to account for any lateral dynamic delay that naturally occurs. A novel interconnected RSC system is proposed to eliminate the lag between the RSC modules with a new control logarithm. The proposed RSC system increases the trailers' roll stability by 16% when compared with independent RSC systems that are commonly used for A-doubles. / Doctor of Philosophy / Commercial trucks play an indispensable role in transporting goods in society. A large percentage of the goods that we use daily or are delivered to our homes are transported on the nation's highways. Most often, the average automobile driver notices the presence of trucks on highways, at times with a bit of disdain. The public's perception appears to be formed by the fact that accidents involving commercial trucks are more publicized because they can cause more property damage, injuries, or even fatalities. The primary thrust of this research is to make the nation's highways safer by offering a better understanding of the dynamics of trucks with double trailers that are operated with a higher frequency on public highways. The double trailer configuration is often favored because of its larger cargo capacity and high modularity. However, their roll dynamics are not as well understood as the conventional tractor-semitrailers. Understanding the dynamics of double-trailer trucks is undoubtedly the very first step toward preventing or reducing the traffic accidents caused by rollovers. This study provides detailed analysis of roll dynamics for double trailers with imbalanced payloads. It also evaluates the effect of different types of trailers, such as drop-frame trailers (those with a "belly" in the mid-section of the trailer) and straight-rail trailers (those without a "belly") on their rollover propensity. The commercialized RSC system is evaluated for its effectiveness on the double-trailer truck. The evaluations are based on over 1,000 sets of tests in highly controlled conditions at the Transportation Research Center (TRC), a special facility for vehicle dynamic assessment in East Liberty, Ohio. It is found that the rollover dynamics of trucks with double trailers can be improved by having an awareness of the most favorable trailer arrangements according to their types of trailers and type of steering (exit-ramp or obstacle avoidance). In addition, this study provides the analysis of the commercialized RSC system for its effectiveness on the double-trailer truck. Lastly, a novel RSC system is proposed to further improve the effectiveness of the original RSC system.
25

Experimental Evaluation of Roll Stability Control System Effectiveness for A-double Commercial Trucks

Van Kat, Zachary Robert 05 January 2022 (has links)
Some of the results of an extensive track testing program at the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech for evaluating the roll stability of commercial trucks with 33-ft A-double trailers are evaluated. The study includes straight-rail trailers with heavy and light loading conditions. Commercial trucks are more susceptible to rollovers than passenger cars because of their higher center of gravity relative to their track width. Multi-trailer articulated heavy vehicles, such as A-doubles, are particularly prone to rollovers because of their articulation and rearward amplification. Electronic stability control (ESC) has been mandated by the National Highway Safety Administration (NHSTA) for Class 8 trucks and busses since 2017. When detecting oversteer or understeer, ESC automatically activates the brakes at the correct side of the steer and/or drive axle(s) to regain steering stability. ESC, however, often cannot sense the likelihood of trailer rollover in multi-trailer articulated heavy vehicles because of the articulation between the trailers and tractors. As a result of this, trailers are often equipped with roll stability control (RSC) systems to mitigate speed-induced rollovers. Sensing the trailer lateral acceleration, RSC activates the trailer brakes to reduce speed and lower the likelihood of rollover. However, a limited number of past studies have shown that the trailer roll angle may provide an earlier indication of a pending rollover than the lateral acceleration. This study intends to provide further analysis in this regard in an effort to improve the effectiveness of RSC systems for trailers. An extensive amount of data from track testing with a 33-ft A-double under heavy and light loading is evaluated. Particular attention is given to lateral accelerations and trailer roll angles prior to rollover and relative to RSC activation time. The study's results indicate that the trailer roll angle provides a slightly earlier indication of rollover than lateral acceleration during dynamic driving conditions, potentially resulting in a timelier activation of RSC. Of course, detecting the roll angle is often more challenging than lateral acceleration, which can be detected with an accelerometer. Additionally, the roll angle measurement may be subjected to errors and possibly unwanted RSC engagement. The study's results further indicate that the trailer-based RSC systems effectively mitigate rollovers in both quasi-steady-state and dynamic driving conditions. / Master of Science / Some of the results of an extensive track testing program at the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech for evaluating the roll stability of commercial trucks with 33-ft A-double trailers are evaluated. "33-ft A-doubles" commonly refer to a commercial truck that has a tractor with two trailers (in this case 33-ft in length) that are connected by an A-dolly. Their modularity and ease of connecting and disconnecting at various drop stations have made such commercial vehicles a common scene on U.S. highways due to the proliferation of e-commerce cargo. Compared to a single-unit or tractor semi-trailer combination, the double- or triple-trailer configurations offer several logistical benefits that make them more advantageous. The multi-trailer vehicles can carry more cargo per driver, lowering driver, fuel, and equipment costs significantly. There are, however, some challenges to operating multi-trailer articulated vehicles. On average, their accidents are more expensive than single-trailer or single-unit trucks. Additionally, they are more susceptible to rolling over and causing property damage, injuries, and at times fatalities. To reduce rollovers, systems with automated braking, called roll stability control (RSC), are often installed on the trailers. RSC applies the trailer brakes if it senses that the vehicle speed — the primary cause of most commercial vehicle accidents — exceeds the safe limit for negotiating a turn. In this study, we intend to evaluate the effectiveness of roll stability control (RSC) systems for reducing the likelihood of speed-induced rollovers. We will also explore ways of improving their performance. Namely, we will evaluate whether sensing the lateral acceleration of the trailer or its roll angle would provide a better means for timely activation of RSC. The study's results indicate that, although more challenging to measure, the trailer roll angle provides a slightly sooner indication of a pending rollover than lateral acceleration. The results also suggest that RSC systems vastly reduce the number of speed-induced rollovers in trucks with 33-ft A-double trailers under different trailer configurations and cargo weights.
26

Stability Control of Electric Vehicles with In-wheel Motors

Jalali, Kiumars 14 June 2010 (has links)
Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to environmental and energy problems. In addition to the fact that electric vehicles have no tailpipe emissions and are more efficient than internal combustion engine vehicles, they represent more versatile platforms on which to apply advanced motion control techniques, since motor torque and speed can be generated and controlled quickly and precisely. The chassis control systems developed today are distinguished by the way the individual subsystems work in order to provide vehicle stability and control. However, the optimum driving dynamics can only be achieved when the tire forces on all wheels and in all three directions can be influenced and controlled precisely. This level of control requires that the vehicle is equipped with various chassis control systems that are integrated and networked together. Drive-by-wire electric vehicles with in-wheel motors provide the ideal platform for developing the required control system in such a situation. The focus of this thesis is to develop effective control strategies to improve driving dynamics and safety based on the philosophy of individually monitoring and controlling the tire forces on each wheel. A two-passenger electric all-wheel-drive urban vehicle (AUTO21EV) with four direct-drive in-wheel motors and an active steering system is designed and developed in this work. Based on this platform, an advanced fuzzy slip control system, a genetic fuzzy yaw moment controller, an advanced torque vectoring controller, and a genetic fuzzy active steering controller are developed, and the performance and effectiveness of each is evaluated using some standard test maneuvers. Finally, these control systems are integrated with each other by taking advantage of the strengths of each chassis control system and by distributing the required control effort between the in-wheel motors and the active steering system. The performance and effectiveness of the integrated control approach is evaluated and compared to the individual stability control systems, again based on some predefined standard test maneuvers.
27

Stability Control of Electric Vehicles with In-wheel Motors

Jalali, Kiumars 14 June 2010 (has links)
Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to environmental and energy problems. In addition to the fact that electric vehicles have no tailpipe emissions and are more efficient than internal combustion engine vehicles, they represent more versatile platforms on which to apply advanced motion control techniques, since motor torque and speed can be generated and controlled quickly and precisely. The chassis control systems developed today are distinguished by the way the individual subsystems work in order to provide vehicle stability and control. However, the optimum driving dynamics can only be achieved when the tire forces on all wheels and in all three directions can be influenced and controlled precisely. This level of control requires that the vehicle is equipped with various chassis control systems that are integrated and networked together. Drive-by-wire electric vehicles with in-wheel motors provide the ideal platform for developing the required control system in such a situation. The focus of this thesis is to develop effective control strategies to improve driving dynamics and safety based on the philosophy of individually monitoring and controlling the tire forces on each wheel. A two-passenger electric all-wheel-drive urban vehicle (AUTO21EV) with four direct-drive in-wheel motors and an active steering system is designed and developed in this work. Based on this platform, an advanced fuzzy slip control system, a genetic fuzzy yaw moment controller, an advanced torque vectoring controller, and a genetic fuzzy active steering controller are developed, and the performance and effectiveness of each is evaluated using some standard test maneuvers. Finally, these control systems are integrated with each other by taking advantage of the strengths of each chassis control system and by distributing the required control effort between the in-wheel motors and the active steering system. The performance and effectiveness of the integrated control approach is evaluated and compared to the individual stability control systems, again based on some predefined standard test maneuvers.
28

Dynamic Stability Control of Front Wheel Drive Wheelchairs Using Solid State Accelerometers and Gyroscopes

Wolm, Patrick January 2009 (has links)
While the active dynamic stability of automobiles has increased over the past 17 years there have been very few similar advances made with electrically powered wheelchairs. This lack of improvement has led to a long standing acceptance of less-than-optimal stability and control of these wheelchairs. Accidents due to loss of stability are well documented. Hence, the healthcare industry has made several efforts for improved control of electric powered wheelchairs (EPWs) to provide enhanced comfort, safety and manoeuvrability at a lower cost. In response, an area of stability control was identified that could benefit from a feedback control system using solid state sensors. To design an effective closed–loop feedback controller with optimal performance to overcome instabilities, an accurate model of wheelchair dynamics needed to be created. Such a model can be employed to test various controllers quickly and repeatedly, without the difficulties of physically setting a wheelchair up for each test. This task was one central goal of this research. A wireless test-bed of a front wheel drive (FWD) wheelchair was also developed to validate a dynamic wheelchair model. It integrates sensors, a data control system, an embedded controller, and the motorised mechanical system. The wireless communication ensures the integrity of sensor data collected and control signals sent. The test-bed developed not only facilitates the development of feedback controllers of motorised wheelchairs, but the collected data can also be used to confirm theories of causes of dynamic instabilities. The prototype test-bed performed the required tasks to satisfaction as defined by the sponsor. Data collected from live tests in which the test-bed followed set patterns, was processed and analysed. The patterns were designed to induce instability. The analysis revealed that an occupied wheelchair is more stable than an unoccupied wheelchair, disproving an initial instability theory proposed in this research. However, a proximal theory explaining over-steer is confirmed. Two models of the FWD test-bed were created. First, a dynamic model inherited from prior research, based on equations of motion was tested and enhanced based on measured data. However, even with alterations to correct parameter values and variables in the equations, a complete model validation was not possible. Second, a kinematic model was created with a factor to compensate for dynamics not normally accounted in kinematic models. The kinematic model was partially validated versus the measured data. Although, still highly accurate, there is room for improvement in this model. Both models contained a sub-system drive motor model, to account for input forces to the FWD wheelchair system model, which is fully validated.
29

Estudo e aplicação de técnicas de controle embarcadas para estabilização de vôo de quadricópteros

Alves, Ana Sophia Cavalcanti 27 November 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-20T17:37:36Z No. of bitstreams: 1 anasophiacavalcantialves.pdf: 26969611 bytes, checksum: 43d8f3d71a0dbcb949394e62ac48bbf4 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-24T16:49:48Z (GMT) No. of bitstreams: 1 anasophiacavalcantialves.pdf: 26969611 bytes, checksum: 43d8f3d71a0dbcb949394e62ac48bbf4 (MD5) / Made available in DSpace on 2017-04-24T16:49:48Z (GMT). No. of bitstreams: 1 anasophiacavalcantialves.pdf: 26969611 bytes, checksum: 43d8f3d71a0dbcb949394e62ac48bbf4 (MD5) Previous issue date: 2012-11-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho tem como objetivo aplicar e comparar técnicas de controle lineares e não lineares no controle de estabilidade de um quadricóptero. Inicialmente, apresenta-se um modelo dinâmico da aeronave para a simulação e controle do sistema. Em seguida, descreve-se os princípios de funcionamento do veículo e algumas características importantes na construção do quadricóptero. Com base no modelo dinâmico, as técnicas de controle são utilizadas para projetar os controladores. Quatro diferentes controladores foram projetados: um controlador PID, um controlador LQR, um controlador com base na teoria de Lyapunov e um controlador utilizando a técnica de Backstepping. Eles são aplicados para controlar a atitude da aeronave, tendo como principal tarefa a estabilização do quadricóptero em voo. Por fim, os controladores são comparados, validados e os resultados das simulações e da implementação real no quadricóptero são apresentados. Os melhores resultados para o controle de estabilidade do quadricóptero são obtidos utilizando a técnica de controle não linear Backstepping. / This present work aims to apply and compare linear and nonlinear control techniques in attitude stabilization of a quadricopter. At first, is presented a aircraft dynamic model for simulation and control of the system. Then, will be described the principles of operation and some important characteristics about quadricopter’s assembling. Based on dynamic model, the control techniques are used to design the controllers. Four different controllers were designed: a PID controller, a LQR controller, a Lyapunov’s stability theory based controller, and a backstepping controller. They are applied to control the aircraft attitude, having as main task the inflight stabilization of quadricopter. At the end, the controllers are compared, validated and the simulation results and real implementation are presented. The best results of quadricopter attitude control are obtained using the nonlinear control technique of Backstepping.
30

A Novel All Wheel Drive Torque Vectoring Control System Applied to Four Wheel Independent Drive Electric Motor Vehicles Utilizing Super Twisting and Linear Quadratic Regulator Methods

Schmutz, Kenneth Daniel 01 December 2018 (has links) (PDF)
This thesis contains the design and simulation test results for the implementation of a new all-wheel drive (AWD) torque vectoring (TV) control system. A separate algorithm using standard control methods is included in this study for a comparison. The proposed controller was designed to be applied to an AWD independent drive electric vehicle, however the main concepts can be re-purposed for other vehicle drive train configurations. The purpose of the control system is to assist the driver in achieving a desired vehicle trajectory whilst also maintaining stability and control of the vehicle. This is accomplished by measuring various real time parameters of the vehicle and using this information as feedback for the control system to act on. The focus of this thesis resides on the controller. Hence, this study assumes perfect observation of feedback parameters, therefore some uncertainties are not accounted for. Using feedback parameters, the control system will manage wheel slip whilst simultaneously generating a torque around the center of gravity of the vehicle by applying a torque differential between the left and right wheels. The proposed TV algorithm is simulated in MATLAB/Simulink along with another separate TV algorithm for comparison. Both algorithms are comprised of two main parts: a slip ratio controller applied to each wheel individually and stability controller that manages yaw rate and side slip of the vehicle. The new algorithm leverages the super twisting algorithm for the slip ratio controller and uses a fusion of a linear quadratic regulator with the integral term of a super twisting algorithm to implement the yaw rate and side slip controller. The other algorithm used for comparison derives its implementation for the slip ratio controller and yaw rate and side slip controllers from simple and standard first order sliding mode control methods. Both control algorithms were tested in three different main tests: anti-lock braking, sine dwell (SD) steering, and constant steering angle (CSA) tests. To increase the comprehensive nature of the study, the SD and CSA tests were simulated at 3 speeds (30,50, and 80 mph) and the steering angle parameter was varied from 2 to 24 degrees in increments of 2. The result of this study proves that the proposed controller is a feasible option for use in theory. Simulated results show advantages and disadvantages of the new controller with respect to the standard comparison controller. Both controllers are also shown to provide positive impacts on the vehicle response under most test conditions.

Page generated in 0.0544 seconds