• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 47
  • 26
  • 25
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modeling and State of Charge Estimation of Electric Vehicle Batteries

Ahmed, Ryan January 2014 (has links)
Electric vehicles have received substantial attention in the past few years since they provide a more sustainable, efficient, and greener transportation alternative in comparison to conventional fossil-fuel powered vehicles. Lithium-Ion batteries represent the most important component in the electric vehicle powertrain and thus require accurate monitoring and control. Many challenges are still facing the mass market production of electric vehicles; these challenges include battery cost, range anxiety, safety, and reliability. These challenges can be significantly mitigated by incorporating an efficient battery management system. The battery management system is responsible for estimating, in real-time, the battery state of charge, state of health, and remaining useful life in addition to communicating with other vehicle components and subsystems. In order for the battery management system to effectively perform these tasks, a high-fidelity battery model along with an accurate, robust estimation strategy must work collaboratively at various power demands, temperatures, and states of life. Lithium ion batteries are considered in this research. For these batteries, electrochemical models represent an attractive approach since they are capable of modeling lithium diffusion processes and track changes in lithium concentrations and potentials inside the electrodes and the electrolyte. Therefore, electrochemical models provide a connection to the physical reactions that occur in the battery thus favoured in state of charge and state of health estimation in comparison to other modeling techniques. The research presented in this thesis focuses on advancing the development and implementation of battery models, state of charge, and state of health estimation strategies. Most electrochemical battery models have been verified using simulation data and have rarely been experimentally applied. This is because most electrochemical battery model parameters are considered proprietary information to their manufacturers. In addition, most battery models have not accounted for battery aging and degradation over the lifetime of the vehicle using real-world driving cycles. Therefore, the first major contribution of this research is the formulation of a new battery state of charge parameterization strategy. Using this strategy, a full-set of parameters for a reduced-order electrochemical model can be estimated using real-world driving cycles while accurately calculating the state of charge. The developed electrochemical model-based state of charge parameterization strategy depends on a number of spherical shells (model states) in conjunction with the final value theorem. The final value theorem is applied in order to calculate the initial values of lithium concentrations at various shells of the electrode. Then, this value is used in setting up constraints for the optimizer in order to achieve accurate state of charge estimation. Developed battery models at various battery states of life can be utilized in a real-time battery management system. Based on the developed models, estimation of the battery critical surface charge using a relatively new estimation strategy known as the Smooth Variable Structure Filter has been effectively applied. The technique has been extended to estimate the state of charge for aged batteries in addition to healthy ones. In addition, the thesis introduces a new battery aging model based on electrochemistry. The model is capable of capturing battery degradation by varying the effective electrode volume, open circuit potential-state of charge relationship, diffusion coefficients, and solid-electrolyte interface resistance. Extensive experiments for a range of aging scenarios have been carried out over a period of 12 months to emulate the entire life of the battery. The applications of the proposed parameterization method combined with experimental aging results significantly improve the reduced-order electrochemical model to adapt to various battery states of life. Furthermore, online and offline battery model parameters identification and state of charge estimation at various states of life has been implemented. A technique for tracking changes in the battery OCV-R-RC model parameters as battery ages in addition to estimation of the battery SOC using the relatively new Smooth Variable Structure Filter is presented. The strategy has been validated at both healthy and aged battery states of life using driving scenarios of an average North-American driver. Furthermore, online estimation of the battery model parameters using square-root recursive least square (SR-RLS) with forgetting factor methodology is conducted. Based on the estimated model parameters, estimation of the battery state of charge using regressed-voltage-based estimation strategy at various states of life is applied. The developed models provide a mechanism for combining the standalone estimation strategy that provide terminal voltage, state of charge, and state of health estimates based on one model to incorporate these different aspects at various battery states of life. Accordingly, a new model-based estimation strategy known as the interacting multiple model (IMM) method has been applied by utilizing multiple models at various states of life. The method is able to improve the state of charge estimation accuracy and stability, when compared with the most commonly used strategy. This research results in a number of novel contributions, and significantly advances the development of robust strategies that can be effectively applied in real-time on-board of a battery management system. / Thesis / Doctor of Philosophy (PhD)
32

A Lithium Battery Current Estimation Technique Using an Unknown Input Observer

Cambron, Daniel 01 January 2016 (has links)
Current consumption measurements are useful in a wide variety of applications, including power monitoring and fault detection within a lithium battery management system (BMS). This measurement is typically taken using either a shunt resistor or a Hall-effect current transducer. Although both methods have achieved accurate current measurements, shunt resistors have inherent power loss and often require isolation circuitry, and Hall-effect sensors are generally expensive. This work explores a novel alternative to sensing battery current by measuring terminal voltages and cell temperatures and using an unknown input observer (UIO) to estimate the battery current. An accurate model of a LiFePO4 cell is created and is then used to characterize a model of the proposed current estimation technique. Finally, the current estimation technique is implemented in hardware and tested in an online BMS environment. Results show that the current estimation technique is sufficiently accurate for a variety of applications including fault detection and power profiling.
33

State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries

Chen, Yi-Ping 08 July 2007 (has links)
This thesis studies State-of-Charge (SOC) method for widely used lead-acid batteries and the most prospective lithium-ion batteries. First, the relationship between the battery capacity and the open-circuit-voltage under different charging/discharging currents is investigated based on the equivalent circuit. Experimental results indicate that the open-circuit-voltage of the lead-acid battery varies regularly with the charging/discharging current and the duration of time for the battery disconnected from the load. Accordingly, a dynamic open-circuit-voltage method in considerations the open-circuit-time and the previous operating current is capable of precisely estimating the battery capacity in a shorter time. As for the lithium-ion batteries, their charging/discharging characteristics reveal that the Coulomb/Ampere-Hour Counting method is capable of yielding accurate estimations. Finally, through the experiments that emulate practical operations, the SOC estimations of batteries are verified to demonstrate the effectiveness and accuracy of the proposed methods.
34

Dynamický model akumulátorů / Dynamic model of the batteries

Milichovský, Miloš January 2013 (has links)
The thesis includes the basic principles of lead-acid, NiCd, NiMH and Li-Ion batteries. There is a description of their features and phenomena that processes in the batteries during charging and discharging. The most important part is devoted to dynamic models of these types of batteries, the parameters that are necessary for their modeling, and testing of absolute error models. Further, the model in Matlab was created which allows the simulation of the GRID-OFF photovoltaic system using the battery model.
35

Modellierung und Ladezustandsdiagnose von Lithium-Ionen-Zellen

Bartholomäus, Ralf, Wittig, Henning 28 February 2020 (has links)
In diesem Beitrag wird ein neuer Ansatz zur Modellierung von Lithium-Ionen-Zellen vorgestellt, bei dem neben einem Modell zur Beschreibung des Nominalverhaltens der Zelle ein Unbestimmtheitsmodell parametriert wird, welches die unvermeidbare Abweichung zwischen dem Nominalmodell und dem tatsächlichen Zellverhalten quantifiziert. Für diese Modellbeschreibung wird ein neuer Algorithmus zur Ladezustandsdiagnose entwickelt, der anstelle eines einzelnen (fehlerbehafteten) Wertes für den Ladezustand ein Vertrauensintervall angibt sowie Artefakte im zeitlichen Verlauf des geschätzten Ladezustandes vermeidet. Die Eigenschaften der Ladezustandsschätzung werden an einer Lithium-Ionen-Zelle und einem Einsatzszenario aus dem automobilen Bereich demonstriert. / In this paper, a new approach to modeling lithium ion cells is presented. In addition to a model that describes the nominal behavior of the cell, an uncertainty model is parameterized which quantifies the unavoidable difference between the nominal model and the true system behavior. For this model description a new algorithm for state of charge estimation is developed, which provides a confidence interval instead of a single unreliable value for the state of charge and avoids artifacts in the progression of the estimated state of charge over time. The properties of the state of charge estimation are demonstrated on a lithium-ion cell in an automotive application scenario.
36

Energy storage in the future smart grid. An investigation of pricing strategies and dynamic load levelling for efficient integration of domestic energy storage within a virtual power plant and its evaluation using a genetic algorithm optimization platform

Okpako, Oghenovo January 2019 (has links)
One feature that is hoped for in the smart grid is the participation of energy prosumers in a power market through demand response program. In this work, we consider a third-party virtual power plant (VPP) that has “real-time” control over a number of prosumers’ storage units within an envisaged free market. Typically, a VPP with domestic energy storage will involve a bidirectional flow of energy, where energy can either flow from the grid to the prosumers’ battery or from the prosumers’ battery to the grid. Such a system requires prices to be set correctly in order to meet the market objectives of all the VPP stakeholders (VPP Aggregator, prosumers, and grid). Previous work has shown how VPPs could operate, and the benefits of using energy storage, coupled with pricing, in terms of reducing energy cost for stakeholders and providing the grid with its required load shape. The published work either assumes prices or costs or then optimises for least cost within the grid parameters i.e. losses, voltage limits, etc. However, the setting of prices in such a way that energy can be traded among VPP stakeholders that satisfies all stakeholders’ objectives has not been fully explored in the literature, particularly with real-time VPP aggregators. In this thesis, we present novel strategies for evaluating and setting the prices of a community VPP with domestic storage based on the bidirectional flow of energy through the VPP aggregator between the grid and the prosumers that mutually meet all VPP stakeholders’ objectives. This showed that depending on pricing and the VPP objectives, demand-side management could be attractive. However, the effect on the grid in terms of the load was not what was desired. A new performance index called the “Cumulative Performance Index” CPI is proposed to measure the VPP’s performance. Using the CPI, it was possible to compare and contrast between the VPP technical performance and its business case for stakeholders. Optimizing with respect to the grid’s requirement for DSM from the VPP, it was possible to achieve a CPI of 100%. This work was implemented using a novel approach on a genetic algorithm platform. / Niger Delta Development Commission of Nigeria
37

Impact of Charge Profile on Battery Fast Charging Aging and Dual State Estimation Strategy for Traction Applications

Da Silva Duque, Josimar January 2021 (has links)
The fast-growing electric vehicles (EVs) market demands huge efforts from car manufacturers to develop and improve their current products’ systems. A fast charge of the battery pack is one of the challenges encountered due to the battery limitations regarding behaviour and additional degradation when exposed to such a rough situation. In addition, the outcome of a study performed on a battery does not apply to others, especially if their chemistries are different. Hence, extensive testing is required to understand the influence of design decisions on the particular energy storage device to be implemented. Due to batteries’ nonlinear behaviour that is highly dependent on external variables such as temperature, the dynamic load and aging, another defying task is the widely studied state of charge (SOC) estimation, commonly considered one of the most significant functions in a battery management system (BMS). This thesis presents an extensive battery fast charging aging test study equipped with promising current charging profiles from published literature to minimize aging. Four charging protocols are carefully designed to charge the cell from 10 to 80% SOC within fifteen minutes and have their performances discussed. A dual state estimation algorithm is modelled to estimate the SOC with the assistance of a capacity state of health (SOHcap) estimation. Finally, the dual state estimation model is validated with the fast charging aging test data. / Thesis / Master of Science in Mechanical Engineering (MSME)
38

Advanced State Estimation For Electric Vehicle Batteries

Rahimifard, Sara Sadat January 2022 (has links)
Lithium-ion (Li-ion) batteries are amongst the most commonly used types in Electric (EVs) and Hybrid Electric (HEVs) Vehicles due to their high energy and power densities, as well as long lifetime. A battery is one of the most important components of an EV and hence it needs to be monitored and controlled accurately. The safety, and reliability of battery packs must then, be ensured by accurate management, control, and monitoring functions by using a Battery Management System (BMS). A BMS is also responsible for accurate real-time estimation of the State of Charge (SoC), State of Health (SoH) and State of Power (SoP) of the battery. The battery SoC provides information on the amount of energy left in the battery. The SoH determines the remaining capacity and health of a pack, and the SoP represents the maximum available power. These critical battery states cannot be directly measured. Therefore, they have to be inferred from measurable parameters such as the current delivered by the battery as well as its terminal voltage. Consequently, in order to offer accurate monitoring of SoC, SoH and SoP, advanced numerical estimation methods need to be deployed. In the estimation process, the states and parameters of a system are extracted from measurements. The objective is to reduce the estimation errors in the presence of uncertainties and noise under different operating conditions. This thesis uses and provides different enhancements to a robust estimation strategy referred to as the Smooth Variable Structure Filter (SVSF) for condition monitoring of batteries. The SVSF is a predictor-corrector method based on sliding mode control that enhances the robustness in the presence of noise and uncertainties. The methods are proposed to provide accurate estimates of the battery states of operation and can be implemented in real-time in BMS. To improve the performance of battery condition monitoring, a measurement-based SoC estimation method called coulomb counting is paired with model-based state estimation strategy. Important considerations in parameter and state estimation are model formulation and observability. In this research, a new model formulation that treats coulomb counting as an added measurement is proposed. It is shown that this formulation enhanced information extraction, leading to a more accurate state estimation, as well as an increase in the number of parameters and variables that can be estimated while maintaining observability. This model formulation is used for characterizing the battery in a range of operating conditions. In turn, the models are integral to a proposed adaptive filter that is a combination of the Interacting Multiple Model (IMM) concept and the SVSF. It is shown that this combined strategy is an efficient estimation approach that can effectively deal with battery aging. The proposed method provides accurate estimation for various SoH of a battery. Further to battery aging adaptation, measurement errors such as sensor noise, drift, and bias that affect estimation performance, are considered. To improve the accuracy of battery state estimation, a noise covariance adaptation scheme is developed for the SVSF method. This strategy further improves the robustness of the SVSF in the presence of unknown physical disturbances, noise, and initial conditions. The proposed estimation strategies are also considered for their implementation on battery packs. An important consideration in pack level battery management is cell-to-cell variations that impact battery safety. This study considers online battery parametrization to update the pack’s model over time and to detect cell-to-cell variability in parallel-connected battery cells configurations. Experimental data are used to validate and test the efficacy of the proposed methods in this thesis. / Thesis / Doctor of Philosophy (PhD) / To address the critical issue of climate change, it is necessary to replace fossil-fuel vehicles with battery-powered electric vehicles. Despite the benefits of electric vehicles, their popularity is still limited by the range anxiety and the cost determined by the battery pack. The range of an electric vehicle is determined by the amount of charge in its battery pack. This is comparable to the amount of gasoline in a gasoline vehicle’s tank. In consideration of the need for methods to address range anxiety, it is necessary to develop advanced algorithms for continuous monitoring and control of a battery pack to maximize its performance. However, the amount of charge and health of a battery pack cannot be measured directly and must be inferred from measurable variables including current, voltage and temperature. This research presents several algorithms for detecting the range and health of a battery pack under a variety of operating conditions. With a more accurate algorithm, a battery pack can be monitored closely, resulting in lower long-term costs. Adaptive methods for determining a battery’s state of charge and health in uncertain and noisy conditions have been developed to provide an accurate measure of available charge and capacity. Methods are then extended to improve the determination of state of charge and health for a battery module.
39

Deep Neural Networks for Improved Terminal Voltage and State-of-Charge Estimation of Lithium-Ion Batteries for Traction Applications

Goncalves Vidal, Carlos Jose January 2020 (has links)
The growing interest in more electrified vehicles has been pushing the industry and academia to pursue new and more accurate ways to estimate the xEV batteries State-of-Charge (SOC). The battery system still represents one of the many technical barriers that need to be eliminated or reduced to enable the proliferation of more xEV in the market, which in turn can help reduce CO2 emissions. Battery modelling and SOC estimation of Lithium-ion batteries (Li-ion) at a wide temperature range, including negative temperatures, has been a challenge for many engineers. For SOC estimation, several models configurations and approaches were developed and tested as results of this work, including different non-recurrent neural networks, such as Feedforward deep neural networks (FNN) and recurrent neural networks based on long short-term memory recurrent neural networks (LSTM-RNN). The approaches have considerably improved the accuracy presented in the previous state-of-the-art. They have expanded the application throughout five different Li-ion at a wide temperature range, achieving error as low as 0.66% Root Mean Square Error at -10⁰C using an FNN approach and 0.90% using LSTM-RNN. Therefore, the use of deep neural networks developed in this work can increase the potential for xEV application, especially where accuracy at negative temperatures is essential. For Li-ion modelling, a cell model using LSTM-RNN (LSTM-VM) was developed for the first time to estimate the battery cell terminal voltage and is compared against a gated recurrent unit (GRU-VM) approach and a Third-order Equivalent Circuit Model based on Thevenin theorem (ECM). The models were extensively compared for different Li-ion at a wide range of temperature conditions. The LSTM-VM has shown to be more accurate than the two other benchmarks, where could achieve 43 (mV) Root Mean Square Error at -20⁰C, a third when compared to the same situation using ECM. Although the difference between LSTM-VM and GRU-VM is not that steep. Finally, throughout the work, several methods to improve robustness, accuracy and training time have been introduced, including Transfer Learning applied to the development of SOC estimation models, showing great potential to reduce the amount of data necessary to train LSTM-RNN as well as improve its accuracy. / Thesis / Doctor of Philosophy (PhD) / For electric vehicle State-of-Charge estimation, several models configurations and approaches were developed and tested as results of this work, including different non-recurrent neural networks, such as Feedforward deep neural networks (FNN) and recurrent neural networks based on long short-term memory recurrent neural networks (LSTM-RNN). The approaches have considerably improved the accuracy presented in the previous state-of-the-art. They have expanded the application throughout five different Li-ion at a wide temperature range, achieving error as low as 0.66% Root Mean Square Error at -10⁰C using an FNN approach and 0.90% using LSTM-RNN. Therefore, the use of deep neural networks developed in this work can increase the potential for xEV application, especially where accuracy at negative temperatures is essential. For Li-ion modelling, a cell model using LSTM-RNN (LSTM-VM) was developed for the first time to estimate the battery cell terminal voltage and is compared against a gated recurrent unit (GRU-VM) approach and a Third-order Equivalent Circuit Model based on Thevenin theorem (ECM). The models were extensively compared for different Li-ion at a wide range of temperature conditions. The LSTM-VM has shown to be more accurate than the two other benchmarks, where could achieve 43 (mV) Root Mean Square Error at -20⁰C, a third when compared to the same situation using ECM. Although the difference between LSTM-VM and GRU-VM is not that steep.
40

Design of a State of Charge (SOC) Estimation Block for a Battery Management System (BMS). / Entwicklung eines Ladezustand Block für Battery Management System (BMS)

Cheema, Umer Ali January 2013 (has links)
Battery Management System (BMS) is an essential part in battery powered applications where large battery packs are in use. BMS ensures protection, controlling, supervision and accurate state estimation of battery pack to provide efficient energy management. However the particular application determines the accuracy and requirements of BMS where it has to implement; in electric vehicles (EVs) accuracy cannot be compromised. The software part of BMS estimates the states of the battery pack and takes the best possible decision. In EVs one of the key tasks of BMS’s software part is to provide the actual state of charge (SOC), which represents a crucial parameter to be determined, especially in lithium iron phosphate (LiFePO4) batteries, due to the presence of the high hysteresis behavior in the open circuit voltage than other kind of lithium batteries. This hysteresis phenomena appears with two different voltage curves during the charging and discharging process. The value of the voltage that the battery is going to assume during the off-loading operation depends on several factors, such as temperature, loop direction and ageing. In this research work, hybrid method is implemented in which advantages of several methods are achieved by implementing one technique combined with another. In this work SOC is calculated from coulomb counting method and in order to correct the error of SOC, an hysteresis model is developed and used due to presence of hysteresis effect in LiFePO4 batteries. An hysteresis model of the open circuit voltage (OCV) for a LiFePO4 cell is developed and implemented in MATLAB/Simulink© in order to reproduce the voltage response of the battery when no current from the cell is required (no load condition). Then the difference of estimated voltage and measured voltage is taken in order to correct the error of SOC calculated from coulomb counting or current integration method. To develop the hysteresis model which can reproduce the same voltage behavior, lot of experiments have been carried out practically in order to see the hysteresis voltage response and to see that how voltage curve change with the variation of temperature, ageing and loop direction. At the end model is validated with different driving profiles at different ambient temperatures.

Page generated in 0.055 seconds