• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 7
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 47
  • 26
  • 25
  • 21
  • 20
  • 18
  • 18
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Battery Balancing on a Full-Bridge Modular Multi-Level Converter

Lin, Junyu January 2022 (has links)
Batteries are becoming popular in the trend of electrification. Performance andlifespan of a battery pack are closely related to how it has been utilized. Withproper balancing control to slow down aging process, variances of capacity andresistance between battery cells can be maintained at a better level. Among balancing methods, dissipative balancing is still the most common method for itssimplicity in control, low cost and high speed. Non-dissipative balancing methods like converter-based and capacitor-based are of researchers’ interest becauseof less heat generated and superior efficiency. In this thesis, the converter-based balancing method is investigated. A modular multilevel converter (MMC) with Pulse-Width Modulation (PWM) pattern iscompared with another MMC with Nearest-Level Modulation (NLM). The speedto balance six battery sub-modules, output power and battery current harmonicsare examined.
22

Implementation of an Algorithm For Estimating Lead-Acid Battery State of Charge

Abrari, Soraya January 2014 (has links)
In this paper, an algorithm for estimating lead-acid battery state of charge (SOC) is implemented. The algorithm, named “Improved Coulomb Counting Algorithm”, was developed within a master thesis project (M. M. Samolyk & J. Sobczak, “Development of an algorithm for estimating Lead-acid Battery State of Charge and State of Health”, M.S. thesis, Dept. Signal Processing, Blekinge Institute of Technology, Karlskrona, Sweden, 2013) with cooperation of a Swedish company – Micropower – Research and Development department.  Currently used method at Micropower is Coulomb Counting; implemented algorithm compares coulomb counting method with open circuit voltage method and uses current, terminal voltage and temperature measurements to finally produce improvement for the very same coulomb counting method and get a better estimation of SOC.  The algorithm was implemented on Micropower Access Battery Monitoring Unit (BMU) using C programming language, so that it can be tested in real time application of the regular battery operation. In the end specific gravity measurements were also presented to comparing the methods.
23

Optimization of community based virtual power plant with embedded storage and renewable generation

Okpako, O., Adamu, P.I., Rajamani, Haile S., Pillai, Prashant January 2016 (has links)
No / The current global challenge of climate change has made renewable energy usage very important. There is an ongoing drive for the deployment of renewable energy resource at the domestic level through feed-in tariff, etc. However the intermittent nature of renewable energy has made storage a key priority. In this work, a community having a solar farm with energy storage embedded in the house of the energy consumers is considered. Consumers within the community are aggregated in to a local virtual power plant. Genetic algorithm was used to develop an optimized energy transaction for the virtual power plant. The results shows that it is feasible to have a virtual power plant setup in a local community that involve the use of renewable generation and embedded storage. The result also show that when maximization of battery state of charge is considered as part of an optimization problem in a day ahead market, certain trade-off would have to be made on the profit of the virtual power plant, the incentive of the prosumer, as well as the provision of peak service to the grid.
24

Lead-Acid Battery Aging and State of Health Diagnosis

Suozzo, Christopher 05 September 2008 (has links)
No description available.
25

Identification and State Estimation for Linear Parameter Varying Systems with Application to Battery Management System Design

Hu, Yiran 07 October 2010 (has links)
No description available.
26

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles

Stienecker, Adam W. 12 October 2005 (has links)
No description available.
27

Lithium-Ion Batteries: Modelling and State of Charge Estimation

Farag, Mohammed 31 July 2014 (has links)
<p>Lithium-ion (Li-ion) cells are increasingly used in many applications affecting our</p> <p>daily life, such as laptops computers, cell phones, digital cameras, and other portable</p> <p>electronic devices. Lithium-ion batteries are increasingly being considered for their use in Electric Vehicles (EV), Hybrid Electric Vehicles (HEV) and Plug-in Hybrid Electric Vehicles (PHEV) due to their high energy density, slow loss of charge when not in use, and for lack of hysteresis effect. New application domains for these batteries has placed greater emphasis on their energy management, monitoring and control strategies.</p> <p>In this thesis, a comparative study between different models and state of charge (SOC) estimation strategies is performed. Battery models range from black-box representation to detailed electrochemical reaction models that consider the underlying physics. The state of charge is estimated using the Extended Kalman filter (EKF) and the Smooth Variable Structure Filter (SVSF). The models and SOC estimation strategies are applied to experimental results from BMW Electrical and Hybrid Research and Development center and validated using a simulation model from AVL CRUISE software.</p> <p>Overall, different models and SOC estimation scenarios were studied. An average improvement of 30% in the estimation accuracy was shown by the SVSF SOC method when compared with the EKF SOC strategy. In general, the SVSF SOC estimation technique demonstrates excellent capability and a fast speed of convergence.</p> / Master of Applied Science (MASc)
28

Intelligent State-of-Charge and State-of-Health Estimation Framework for Li-ion Batteries in Electrified Vehicles using Deep Learning Techniques

Chemali, Ephrem January 2018 (has links)
The accurate and reliable estimation of the State-of-Charge (SOC) and State-of-Health (SOH) of Li-ion batteries is paramount to the safe and reliable operation of any electrified vehicle. Not only is accuracy and reliability necessary, but these estimation techniques must also be practical and intelligent since their use in real world applications can include noisy input signals, varying ambient conditions and incomplete or partial sequences of measured battery data. To that end, a novel framework, utilizing deep learning techniques, is considered whereby battery modelling and state estimation are performed in a single unified step. For SOC estimation, two different deep learning techniques are used with experimental data. These include a Recurrent Neural Network with Long Short-Term Memory (LSTM-RNN) and a Deep Feedforward Neural Network (DNN); each one possessing its own set of advantages. The LSTM-RNN achieves a Mean Absolute Error (MAE) of 0.57% over a fixed ambient temperature and a MAE of 1.61% over a dataset with ambient temperatures increasing from 10°C to 25°C. The DNN algorithm, on the other hand, achieves a MAE of 1.10% over a 25°C dataset while, at -20°C, a MAE of 2.17% is obtained. A Convolutional Neural Network (CNN), which has the advantage of shared weights, is used with randomized battery usage data to map raw battery measurements directly to an estimated SOH value. Using this strategy, average errors of below 1% are obtained when using fixed reference charge profiles. To further increase the practicality of this algorithm, the CNN is trained and validated over partial reference charge curves. SOH is estimated with a partial reference profile with the SOC ranging from 60% to 95% and achieves a MAE of 0.81%. A smaller SOC range is then used where the partial charge profile spans a SOC of 85% to 95% and a MAE of 1.60% is obtained. Finally, a fused convolutional recurrent neural network (CNN-RNN) is used to perform combined SOC and SOH estimation over constant charge profiles. This is performed by feeding the estimated SOH from the CNN into a LSTM-RNN, which, in turn, estimates SOC with a MAE of less than 0.5% over the lifetime of the battery. / Thesis / Doctor of Philosophy (PhD)
29

Performance Characterization and Modelling of a Lithium-Ion Cell using Electrochemical Impedance Spectroscopy

Tawakol, Abdel Rahman January 2020 (has links)
The electrification of transportation is gradually becoming more prominent as it is more efficient and sustainable than conventional transportation alternatives found today. At the centre of this growth is battery testing and research, as they are the primary energy storage devices used to power electric vehicles. With the growing complexity of battery systems, testing and monitoring their performance relies on highly specialized and precise equipment. Furthermore, the use of battery models helps researchers improve their research while reducing the time and costs involved in testing. As such, accurate battery modelling is a critical component in predicting how a battery will behave in specific applications and under various conditions. In this research, a lithium-ion cell is tested extensively, and its performance is characterized across a wide range of operating conditions including temperature, current rates and state of charge (SOC) values. An equivalent circuit model for impedance modelling is proposed, which utilizes constant phase elements represented in the time domain to improve fitting accuracy. This is done concurrently with the development of a state of the art, fully automated battery test system which is showcased throughout the course of the research. In addition to this, an analysis is conducted on the low frequency impedance data used during research, as well as its effect on model accuracy. To provide significance behind the results and relevance to real-world applications, all of the impedance modelling is experimentally validated using temporal drive cycle data. This research was able to demonstrate that the use of a ZARC element can improve the mid-frequency fitting of impedance data relative to a conventionally used modelling approach. It also showcases how the use of low frequency electrochemical impedance spectroscopy (EIS) data can negatively impact the accuracy of impedance modelling. / Thesis / Master of Applied Science (MASc)
30

Vliv aditiv v olověných akumulátorech pro hybridní elektrická vozidla / Effect of additives in lead-acid batteries for hybrid electric vehicles.

Klaner, Pavel January 2012 (has links)
This thesis deals with issues of the issue lead-acid batteries and their application in mode of hybrid electric vehicle. The experiment is focused on the production of electrodes to determine the effect five types of additives in negative active mass in PsoC(Partial State of Charge) mode. This simulates conditions occurring in the mode of hybrid electric vehicles (HEV).

Page generated in 0.0572 seconds