Spelling suggestions: "subject:"[een] STEEL STRUCTURES"" "subject:"[enn] STEEL STRUCTURES""
71 |
Structural Capacity of Light Gauge Steel Storage Rack UprightsKoen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
|
72 |
Shear lag effects on welded steel angles and plates /Mannem, Rajaprakash, January 2002 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 168-170.
|
73 |
Frame stability considering member interaction and compatibility of warping deformationsMacPhedran, Ian James Unknown Date
No description available.
|
74 |
Frame stability considering member interaction and compatibility of warping deformationsMacPhedran, Ian James 11 1900 (has links)
Steel moment frames are often used in structures to provide lateral strength and stiffness to the structure. These frames are subject to failure modes including buckling in the out of plane direction in a lateral-torsional buckling mode. This failure mode is influenced by interactions of the members through their connections. While the flexural behaviour has been studied in depth and for some time, the effect of torsional warping interaction between members has not been studied extensively. This work presents an analysis of the effect of including the effects of warping interaction or neglecting them, as is done in the current design practice. The issues of inelastic behaviour are considered, as well as the case of torsionally sensitive members. A joint element model is created to treat the warping displacements and their continuity through the joint. The study finds that the current practice of neglecting the warping displacement continuity appears to be a conservative assumption. It is recommended that the present practice of neglecting the effects of warping in analysis of frames continues. / Structural Engineering
|
75 |
Structural Capacity of Light Gauge Steel Storage Rack UprightsKoen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
|
76 |
The design and behaviour of concrete filled steel tubular beam-columns /Chao, Min. January 2000 (has links)
Thesis (Ph. D.) -- University of Western Sydney, Hawkesbury, 2000. / Includes bibliographical references (leaves 225-241).
|
77 |
Constitutive properties of weld metal and heat-affected zone at butt weld /Naqvi, Zuhair January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2004. / Includes bibliographical references (p. 97-99). Also available in electronic format on the Internet.
|
78 |
An experimental and numerical study of square and rectangular slotted HSS connections /Huang, Rongfeng, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2005. / Includes bibliographical references (p. 139-143). Also available in electronic format on the Internet.
|
79 |
Non-destructive evaluation of cracking in tubular T-joints using vibration procedures /Cheng, Shumin, January 1998 (has links)
Thesis (Ph. D.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 264-272.
|
80 |
Análise numérica de vigas mistas pelo método dos elementos finitos / Numerical analysis of composite beams by the finite element methodTamayo, Jorge Luis Palomino January 2011 (has links)
O emprego das vigas mistas na atualidade é uma das opções atrativas para a construção de pontes e das lajes dos andares de prédios. A obtenção das melhores características individuais em resistência e rigidez dos materiais envolvidos é aproveitada neste tipo de estruturas. O presente trabalho visa à formulação de um modelo matemático e sua implementação numérica através de um código computacional capaz de representar com confiabilidade este tipo de estruturas para cargas de curta duração. Assim é utilizada a teoria de plasticidade associada com um algoritmo de retorno explícito para o concreto e o aço estrutural, sendo inserido estes procedimentos dentro de um processo incremental iterativo baseado num critério de convergência de forças ou deslocamentos. Para a modelagem da laje de concreto é desenvolvido o elemento finito quadrilátero de casca degenerada de oito nós, que considera as tensões de corte fora do plano, usando a teoria de Reissner-Mindlin. O fenômeno de travamento por cortante, característico neste tipo de elemento finito, é solucionado usando uma regra de integração reduzida e uma modificação do fator de forma aplicado às tensões de corte. Para a modelagem da viga de aço foi implementado um elemento de casca poliédrica produto do acoplamento das rigidezes do elemento de placa delgada e de membrana proposto por Batoz & Tahar (1982) e Ibrahimbegovic et al. (1990), respectivamente. Os conectores de corte são modelados mediante elementos de barra tridimensional viga-coluna que unem os planos médios da laje de concreto e mesa superior da viga de aço nas posições reais dos conectores de corte de acordo com os relatórios experimentais para os exemplos estudados. A compatibilidade nas rotações e deslocamentos axiais no conector é conseguida mediante a inclusão de valores muito grandes nas rigidezes correspondentes. O trabalho em conjunto dos três elementos desenvolvidos, laje de concreto, viga de aço e conectores, possibilita a abordagem de qualquer estrutura complexa do tipo viga mista. A validação do modelo numérico proposto é demonstrada através dos exemplos de aplicação testados. / Currently, composite sections are one of the more attractive options to be used for bridge and building floors construction. The reason is that the best individual characteristics in strength and stiffness of the involved materials are obtained for these structures. Formulation of a mathematical model and its numerical implementation for a reliable simulation of these structures for short time analysis is the main objective of the present work. An associated theory of plasticity and an explicit return algorithm for concrete and steel materials are used, being these procedures part of the well known incremental iterative procedure based on criteria of unbalanced forces or displacements. The quadrilateral degenerated shell element of eight nodes, which considers out of plane shear stresses in accordance with Reissner-Mindlin theory was developed to modeling the concrete slab. The shear locking phenomena for these elements was avoided with a reduced integration rule and by using a modified shape factor for shear stresses. For modeling the steel beam, a plane shell element, which is originated by the assemble of the plate element and membrane element proposed by Batoz & Tahar (1982) and Ibrahimbegovic et al. (1990) was formulated. The shear stud connectors were modeled trough a three-dimensional bar element, which joint the middle plane of the concrete slab and the middle plane of the top steel flange of the steel beam representing the actual positions of the connectors, according to the experimental works for the examples studied here. These three elements, working simultaneously allow to model any complex structure of composite section. The validation of the numerical model is demonstrated with the aid of several examples.
|
Page generated in 0.0384 seconds