Spelling suggestions: "subject:"[een] SUCTION"" "subject:"[enn] SUCTION""
181 |
Contribuições ao estudo do comportamento de um solo residual compactado quasi-saturado. / Contributions to the behavior\'s study of a quasi-saturated compacted residual soil.Carnero Guzmán, Genaro Gonzalo 25 April 2014 (has links)
A compactação de solos em climas com elevada concentração de precipitação apresenta dificuldade que afetam o cronograma físico e financeiro das obras. A execução de aterros com teor de umidade elevado gera solos com grau de saturação elevado que, por sua vez, induz poropressões indesejáveis durante a construção. Assim, o solo é, em geral, compactado no entorno do teor de umidade ótimo (+/- 3%) e densidade seca máxima (GC de 95% a 105%). No entanto, é possível avaliar o solo de modo a possibilitar a compactação acima do teor de umidade ótimo. Estes aterros são chamados aterros úmidos. Os poucos estudos realizados nestas condições encontraram como uma das dificuldades a ausência da medição da sucção durante os ensaios. A medição da sucção logo após a compactação utilizando-se o tensiômetro de alta capacidade (TAC) possibilitou estudos sobre o desenvolvimento da poropressão de água com o carregamento. Utilizando de ensaios triaxiais de umidade constante (CW) e com o uso do TAC é possível se obter as informações importantes para a execução de aterros úmidos. O presente trabalho estuda experimentalmente o comportamento de um solo residual de gnaisse compactado na umidade ótima e em duas condições de compactação acima do teor de umidade ótimo. São realizados ensaios na condição saturada (ensaios CIU) e não saturada (ensaios CW) com medição direta de sucção com o tensiômetro de alta capacidade. O trabalho apresenta um estudo do comportamento dos solos compactados no estado quasi-saturado e avalia os seguintes aspectos: Efeito da técnica da contrapressão para saturação no comportamento mecânico do solo, desenvolvimento da sucção após a compactação e durante ensaios de resistência, correlação entre a curva de retenção de água e o comportamento mecânico do solo, aplicação das equações de Bishop (1959) e Fredlund et al. (1978), procedimento para determinação da superfície de ruptura. O trabalho conclui que o solo residual estudado permite a construção de aterros úmidos sem o desenvolvimento de poropressões de água indesejáveis. Conclui-se ainda que com o uso do TAC associado a ensaios triaxiais CW é possível a obtenção da envoltória de ruptura na condição não saturada de forma simples. / The compaction of soils in climates with high concentration of rainfall has created problems that affect the physical and financial schedule of works. Embankments constructed with soils having high water content generate high degree of saturation, which, in turn, induces undesirable pore water pressures during construction. In general, the soil is compacted in the vicinity of the optimum water content (+/-3 %) and maximum dry density (DC 95% to 105 %). However, it is possible to evaluate the soil behaviour to enable compaction above the optimum moisture content. These embankments are called \"wet landfills\". The few studies carried out in these conditions found difficulties in the measuring of the suction during tests. The measurement of suction immediately after compaction using a high-capacity tensiometer (HCT) allowed studies on the development of the pore-water pressure during loading. Using constant water content triaxial test (CW) and the HCT, it is possible to obtain necessary information to construct a \"wet landfills\". This work experimentally investigate the behaviour of a residual soil of gneiss compacted at three conditions above the optimum moisture content. Tests are performed in the saturated (CIU tests) and unsaturated (CW trials) conditions with direct measurement of suction using a high-capacity tensiometer. The study evaluated the behaviour of a compacted soils in quasi-saturated state and investigating the following aspects: Effect of back-pressure technique for saturation on mechanical behaviour of the soil, development of suction after compaction and during shear tests, correlation between the soil water retention curve and the mechanical behaviour of the soil, evaluation of the use of the equations suggested by Bishop (1959) and Fredlund et al. (1978) for determining the failure surface. The work concludes that the use of the residual soil studied allows the construction of wet landfills without undesirable positive pore-water pressure. In addition, the research concludes that using the high-capacity tensiometer associated with CW triaxial tests is possible to obtain the failure envelope in unsaturated condition in a simple way.
|
182 |
The Effect of Leading-Edge Geometry on the Induced Drag of a Finite WingJanuary 2019 (has links)
abstract: This study identifies the influence that leading-edge shape has on the aerodynamic characteristics of a wing using surface far-field and near-field analysis. It examines if a wake survey is the appropriate means for measuring profile drag and induced drag. The paper unveils the differences between sharp leading-edge and blunt leading-edge wings with the tools of pressure loop, chordwise pressure distribution, span load plots and with wake integral computations. The analysis was performed using Computational Fluid Dynamics (CFD), vortex lattice potential flow code (VORLAX), and a few wind-tunnels runs to acquire data for comparison. This study found that sharp leading-edge wings have less leading-edge suction and higher drag than blunt leading-edge wings.
The blunt leading-edge wings have less drag because the normal vector of the surface in the front section of the airfoil develops forces at opposed skin friction. The shape of the leading edge, in conjunction with the effect of viscosity, slightly alter the span load; both the magnitude of the lift and the transverse distribution. Another goal in this study is to verify the veracity of wake survey theory; the two different leading-edge shapes reveals the shortcoming of Mclean’s equation which is only applicable to blunt leading-edge wings. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2019
|
183 |
Pullout behaviour of suction embedded plate anchors in claySong, Zhenhe January 2008 (has links)
In recent years oil and gas mining has moved into increasingly deeper water in search of undeveloped fields. As water depths approach and exceed 3000 m conventional offshore foundation systems become inefficient and ineffective in stabilising platforms and floating production storage units. The trend of supporting structure design in deep water has been to install catenary and taut leg mooring systems. Consequently, many types of anchoring systems are being developed and used in order to withstand large mooring forces. The SEPLA (Suction Embedded Plate Anchor) is ideal for use in this situation. This project has employed advanced numerical techniques and centrifuge testing to study pullout behaviour of plate anchor foundations in different soil profiles and suction caisson installation effect with the aim of generating a robust framework for design. The behaviour of strip and circular plate anchors during vertical pullout in uniform and normally consolidated clays has been studied by means of small strain and large deformation finite element analyses. Both fully bonded (attached), and ‘vented’ (no suction on rear face), anchors have been considered. The current numerical results were compared with existing laboratory test data, finite element results and analytical solutions. This study showed that the ultimate pullout capacity factors (Nc) for deep embedment were 11.6 and 11.7 for smooth and rough strip anchors and 13.1 and 13.7 for smooth and rough circular anchors respectively. When the anchor base was vented, the soil stayed attached to the anchor base for deep embedment, and the pullout capacity was therefore the same as for the attached anchor. The separation depth ratio, Hs/B or Hs/D was found to increase linearly with the normalised strength ratio, su/γ'B or su/γ'D. / Numerical simulation has been conducted to assess the bearing capacity for inclined pullout plate anchors. This bearing capacity analysis was performed by embedding the anchors in clay with different initial inclinations and different embedment ratios. Both the attached anchor base and vented base were evaluated. The results showed that the bearing capacities of the inclined plate anchors were associated with the inclination angles and base conditions. The separation depth of the plate anchors can be assessed by a simple equation from vertically pulled out plate anchors. Large deformation finite element analyses of plate anchor keying in clay has been performed. The effects of anchor thickness, anchor padeye eccentricity, anchor-soil interface roughness, soil shear strength, anchor submerged weight and soil disturbance have been studied with anchors in uniform or normally consolidated clays. The numerical results were compared with transparent soil test and existing centrifuge test data. The study showed that the RITSS method works well in simulating the anchor keying process. Anchor padeye eccentricity played an important role in anchor keying. A normalised anchor geometry ratio was used to estimate the loss in embedment during plate anchor’s keying. Both finite element analysis and centrifuge tests have been conducted to study the suction caisson installation effect. In finite element analysis, the soil disturbed zone varied from 3 times the caisson wall thickness to a full area inside a caisson. / Centrifuge tests of suction embedded plate anchors were conducted in normally consolidated kaolin clay and transparent uniform soil. It can be concluded that the reduction in anchor capacity due to soil disturbance after suction caisson installation depends on re-consolidation time and soil sensitivity. The soil disturbance also reduced the loss of embedment during the anchor keying process.
|
184 |
Aggregate coalescence and factors affecting it.Hasanah, Uswah January 2007 (has links)
The phenomenon called soil aggregate coalescence occurs at contact-points between aggregates and causes soil strength to increase to values that can inhibit plant root exploration and thus potential yield. During natural wetting and drying, soil aggregates appear to ‘weld’ together with little or no increase in dry bulk density. The precise reasons for this phenomenon are not understood, but it has been found to occur even in soils comprised entirely of water stable aggregates. Soil aggregate coalescence has not been widely observed and reported in soil science and yet may pose a significant risk for crops preventing them from achieving their genetic and environmental yield potentials. This project used soil penetrometer resistance and an indirect tensile-strength test to measure the early stages of aggregate coalescence and to evaluate their effects on the early growth of tomato plants. The early stages of aggregate coalescence were thought to be affected by a number of factors including: the matric suction of water during application and subsequent drainage, the overburden pressure on moist soil in the root zone, the initial size of soil aggregates prior to wetting, and the degree of sodicity of the soil aggregates. Seven mainexperiments were conducted to evaluate these factors. The matric suction during wetting of a seedbed affects the degree of aggregate slaking that occurs, and the strength of the wetted aggregates. The matric suction during draining affects the magnitude of ‘effective stresses’ that operate to retain soil structural integrity as the soil drains and dries out. An experiment was conducted to evaluate the influence of matric suction (within a range of suctions experienced in the field) on aggregate coalescence using soils of two different textures. Sieved aggregates (0.5 to 2 mm diameter) from a coarse-textured and two fine-textured (swelling) soils were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and subjected to different suctions on wetting (near-saturation, and 1 kPa), and on draining (10 kPa on sintered-glass funnels, and 100 kPa on ceramic pressure plates). After one-week of drainage, penetrometer resistance was measured as a function of depth to approximately 45 mm (penetrometer had a recessedshaft, cone diameter = 2 mm, advanced at a rate of 0.3 mm/min). Tensile strength of other core-samples was measured after air-drying using an indirect “Brazilian” crushing test. For the coarse-textured soil, penetrometer resistance was significantly greater for samples wet to near-saturation, despite there being no significant increase in dry bulk density; this was not the case for the finer-textured soils, and it was difficult to distinguish the effects of variable bulk density upon drying from those of the imposed wetting treatments. In both coarse- and fine-textured soils, the tensile strength was significantly greater for samples wet to near-saturation. Thus wetting- and draining-suctions were both found to influence the degree of soil aggregate coalescence as measured by penetrometer resistance and tensile strength. Aggregate coalescence in irrigated crops is known to develop as the growing season progresses. It was therefore thought to be linked to the repeated occurrence of matric suctions that enhance the phenomenon during cycles of wetting and draining. An experiment was conducted to determine the extent of aggregate coalescence in a coarsetextured and two fine-textured (swelling clay) soils during 8 successive cycles of wetting and draining. Sieved aggregates (0.5 to 2 mm diameter) from each soil were packed into cylindrical rings (4.77 cm i.d., 5 cm high) and wetted to near saturation for 24 h. They were then drained on ceramic pressure plates to a suction of 100 kPa for one week, after which penetrometer resistance and tensile strength were measured as described above. The degree of expression of aggregate coalescence depended on soil type. For the coarse-textured soil, repeated wetting and draining significantly increased bulk density, penetrometer resistance and tensile strength. For the fine-textured soil, penetrometer resistance and bulk density did not vary significantly with repeated wetting and draining; on the contrary, there was evidence in these swelling clay soils to suggest bulk density and penetrometer resistance decreased. However, there was a progressive increase in tensile strength as cycles of wetting and draining progressed. The expansive nature of the fine-textured soil appears to have masked the development of aggregate coalescence as measured by penetrometer resistance, but its expression was very clear in measurements of tensile strength despite the reduction in bulk density with successive wetting and draining. Field observations have indicated that aggregate coalescence is first expressed at the bottom of the seedbed and that it develops progressively upward to the soil surface during the growing season. This suggests that overburden pressures may enhance the onset of the phenomenon by increasing the degree of inter-aggregate contact. Soils containing large quantities of particulate organic matter were known to resist the onset of aggregate coalescence to some extent. An experiment was conducted to evaluate the effects of soil organic matter and overburden pressures, by placing brass cylinders of various weights (equivalent to static load pressures of 0, 0.49, 1.47 and 2.47 kPa) on the top of dry soil aggregates (0.5 – 2 mm diameter) having widely different soil organic carbon contents placed in steel rings 5 cm high and 5 cm i.d. With the weights in place, the aggregates were wetted to near-saturation for 24 h and then drained on ceramic pressure plates to a suction of 100 kPa for one week. Bulk density, penetrometer resistance and tensile strength were measured when the samples were removed from the pressure plates and they all increased significantly with increasing overburden pressure in the soil with low organic matter content, but not in the soil with high organic matter content. The amount of tillage used to prepare seedbeds influences the size distribution of soil aggregates produced – that is, more tillage produces finer seedbeds. The size distribution of soil aggregates affects the number of inter-aggregate contact points and this was thought to influence the degree of aggregate coalescence that develops in a seedbed. Previous work has shown that soil organic matter reduces aggregate coalescence and so an experiment was conducted to evaluate the effects of aggregate size and organic matter on the phenomenon. For soils with high and low organic matter contents, aggregate size fractions of < 0.5, 0.5 – 2, 2 – 4, and < 4 mm were packed into soil cores (as above) and wetted to near-saturation then drained to 100 kPa suction as described above. Penetrometer resistance and tensile strength were measured and found to increase directly with the amount of fine material present in the soil cores – being greater in the < 0.5 mm and < 4 mm fractions, and being less in the 0.5 – 2 mm and 2 – 4 mm fractions. In all cases, penetrometer resistance and tensile strength were lower in the samples containing more organic matter. The rate at which soil aggregates are wetted in a seedbed affects the degree of slaking and densification that occurs, and the extent to which aggregates are wetted influences the overall strength of a seedbed. Both wetting rate and the extent of wetting were believed to influence the onset of aggregate coalescence and were thought to be affected by soil organic matter and irrigation technique. An experiment was therefore designed to separate these effects so that improvements to management could be evaluated for their greatest efficacy – that is, to determine whether management should focus on improving irrigation technique or increasing soil organic matter content, or both. The rate of wetting was controlled by spraying (or not spraying) soil aggregates (0.5 – 2 mm diameter) with polyvinyl alcohol (PVA). Samples of coarse- and fine-textured soils were packed into steel rings (as above) and subjected to different application rates of water (1, 10 and 100 mm/h) using a dripper system controlled by a peristaltic pump. Samples were brought to either a near-saturated state or to a suction of 10 kPa for 24 h, and then drained on a pressure plate at a suction of 100 kPa for one week. Measurements of penetrometer resistance and tensile strength were then made as described above. As expected, penetrometer resistance was lower in samples treated with PVA before wetting (slower wetting rates) and in samples held at a greater suction (10 kPa) after initial wetting (greater inter-aggregate strength). The effects were more pronounced in the coarse-textured soil. In both coarse- and fine-textured soils, tensile strengths increased with increasing wetting rate (greatest for 100 mm/h) and extent of wetting (greater when held at near-saturated conditions). The rate of wetting was found to be somewhat more important for promoting aggregate coalescence than the extent of wetting. Because aggregate coalescence often occurs with little or no increase in bulk density, an explanation for the increase in penetrometer resistance and tensile strength is unlikely to be explained by a large increase in the number of inter-aggregate contacts. An increase in the strength of existing points of inter-aggregate contact was therefore considered in this work. For inter-aggregate bond strengths to increase, it was hypothesized that small increases in the amount of mechanically (or spontaneously) dispersed clay particles, and subsequent deposition at inter-aggregate contact points could increase aggregate coalescence as measured by penetrometer resistance and tensile strength. An experiment was devised to manipulate the amount of spontaneously dispersed clay in coarse- and fine-textured soils of high and low organic matter content. The degree of sodicity of each soil was manipulated by varying the exchangeable sodium percentage (ESP) of soil aggregates (0.5 – 2mm) above and below a nominal threshold value of 6. Dry aggregates were then packed into steel rings (as above) and subjected to wetting near saturation, then draining to a suction of 100 kPa for one week as described above. Measurements were then taken of penetrometer resistance and tensile strength, both of which were affected by ESP in different ways. In the coarse-textured soil, sodicity enhanced aggregate slaking and dispersion, which increased bulk density. While penetrometer resistance also increased, its effect on aggregate coalescence could not be separated from a simple effect of increased bulk density. Similarly, the effect of sodicity on aggregate coalescence in the fine-textured soil was confounded by the higher water contents produced by greater swelling, which produced lower-than-expected penetrometer resistance. Measurements of tensile strength were conducted on air-dry samples, and so the confounding effects of bulk density and water content were eliminated and it was found that tensile strength increased with sodicity in both coarse- and fine-textured soils. The presence of dispersed clay was therefore implicated in the development of aggregate coalescence in this work. Finally, a preliminary evaluation of how the early stages of aggregate coalescence might affect plant growth was attempted using tomatoes (Gross lisse) as a test plant. Seeds were planted in aggregates (0.5 – 4 mm) of a coarse- or fine-textured soil packed in steel rings. These were wetted at a rate of 1 mm/h to either near-saturation (for maximum coalescence) or to a suction of 10 kPa (for minimum coalescence) and held under these conditions for 24 h. All samples were then transferred to a ceramic pressure plate for drainage to 100 kPa suction for one week. Samples were then placed in a growth-cabinet held at 20C with controlled exposure to 14 h light/day. Germination of the seeds, plant height, and number and length of roots were observed. Germination of the seeds held at near-saturation in both coarse- and fine-textured soils was delayed by 24 h compared with seeds held at 10 kPa suction. Neither the number nor the length of tomato roots differed significantly between the different treatments and soils. In the coarse-textured soil, however, the total root length over a period of 14 days was somewhat greater in the uncoalesced samples than in the coalesced samples, but this difference was not statistically significant. These results suggest that aside from delaying germination, aggregate coalescence may not have a large effect on early growth of tomato plants. However, this is not to say that detrimental effects may not be manifest at later stages of plant growth, and this certainly needs to be evaluated, particularly because aggregate coalescence increase with repeated cycles of wetting and draining. In conclusion, the primary findings of the work undertaken in this thesis were: • Rapid wetting of soil aggregates to near-saturation enhanced the onset of soil aggregate coalescence as measured by (in some cases) penetrometer resistance at a soil water suction of 100 kPa, and (in most cases) tensile strength of soil cores in the air-dry state. The rate of wetting appeared to be more important in bringing on aggregate coalescence than how wet the soil eventually became during wetting. This means reducing the rate at which irrigation water is applied to soils may reduce the onset of aggregate coalescence more effectively than controlling the total amount of water applied – though both are important. The literature reports that aggregate coalescence occurs in the field over periods of up to several months, involving multiple wetting and draining cycles, but the work here demonstrated that this can occur over much shorter time periods depending on conditions imposed. • Aggregate coalescence occurred in coarse-textured soils regardless of whether the bulk density increased during wetting and draining. In finer-textured soils, the response to wetting conditions varied and was complicated by changes in bulk density and water content due to swelling. • Small overburden pressures enhanced the onset of aggregate coalescence, but these effects were diminished in the presence of high soil organic matter contents. • Finer aggregate size distributions (which are often produced in the field by excessive tillage during seedbed preparation) invariably led to greater aggregate coalescence than coarser aggregate size distributions. The effects of aggregate size were mitigated to some extent by higher contents of soil organic matter. • Sodicity enhanced aggregate coalescence as measured by tensile strength, but when penetrometer resistance was measured in the moist state, the effects were masked to some extent by higher water contents generated by swelling and dispersion. This work suggests that tensile strength (in the air dry state) may be a more effective measure of aggregate coalescence than penetrometer resistance. • Early plant response to aggregate coalescence was not large, but the response may become magnified during later stages of growth. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297583 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2007
|
185 |
Comportement hydromécanique des sols fins : de l'état saturé à l'état non saturéLi, Xiang-Ling 17 June 1999 (has links)
Les sols non saturés jouent un rôle important dans de nombreux domaines. En Génie Civil (stabilité des talus, fondations superficielles), en Ingénierie de l'environnement (transport de polluants par les eaux souterraines, enfouissement de déchets radioactifs), en Ingénierie des Réservoirs (subsidence suite aux pompages dans les champs pétroliers ou dans les nappes aquifères), etc.
L'objet de la thèse est l'étude du comportement hydromécanique des sols fin non saturés, tels les limons et les argiles.
Les phénomènes typiques du comportement de ces sols sont d'abord présentés avant d'aborder l'étude de leurs lois constitutives. Divers modèles sont passés en revue et un modèle unifié original est développé.
Ensuite, une vaste gamme d'essais de laboratoire est analysée. Ils portent sur des sols saturés, quasi saturés et non saturés et concernent quatre matériaux: l'argile de Kruibeke, le limon de Gembloux, l'argile de Boom et la bentonite d'Almeria.
Cette partie de la recherche conduit à une critique détaillée des procédures classiques d'essais de laboratoires sur les sols supposés saturés.
Elle fournit également une base de données importante pour la calibration de la loi constitutive unifiée développée plus haut.
Enfin, des simulations numériques, réalisées en aveugle, d'expériences n'ayant pas servi à la calibration permettent de valider ce modèle.
|
186 |
Fat contamination of pericardial suction blood in cardiac surgery : clinical and experimental studies in perspectives of transfusion logisticsAppelblad, Micael January 2006 (has links)
Introduction: During cardiac surgery aided by cardiopulmonary bypass (CPB) the autotransfusion of pericardial suction blood (PSB) is regarded mandatory to limit allogeneic blood exposure. PSB is however proposed as a source of lipid microemboli and to contribute to brain damage. This thesis addresses the logistics of allogeneic blood transfusion during coronary artery bypass grafting (CABG), the embolic potential of reinfused PSB, and means to reduce PSB fat contamination, investigated both clinically and experimentally. Methods: Study I) Patients undergoing CABG surgery (n=2469) were included in a database study. The magnitude of surgical bleeding versus blood transfusion was analyzed to extract a subgroup of patients (n=982) in whom transfusions were independent from bleeding. Study II) PSB and venous-blood samples were collected from patients undergoing routine CABG (n=20). The in vitro capillary-flow properties of blood subcomponents and the effects of routine screen filtration were tested. PSB fat contamination was evaluated by imprint microscopy. Study III) Heat extracted liquid human fat or soya oil were mixed with mediastinal drain blood (n=20) and incubated in a temperature controlled column, to evaluate spontaneous density separation of fat. Study IV) The findings from study-III were applied to develop a fat-reducing system (FRS) using two stacked compartments. The FRS was experimentally tested (n=12), with similar methods as in study-III, and clinically evaluated (n=10). A single-chamber blood bag (n=10) served as reference. Results: Study I) A surgical bleeding of less than 400 mL showed no correlation to blood transfusion, although 64 of 982 patients still received allogeneic blood. The strongest predictors for this kind of transfusion were; female gender, weight ≤70 kg, CPB time ≥90 minutes, CPB temperature ≤32 ºC, and advanced age (P<.001 - .038). Study II) The capillary-flow profile of PSB plasma was highly impaired compared to venous plasma (P<.001). Conversely, blood-cell components showed no difference between PSB and venous blood. Routine screen filtration showed no ameliorating effect on capillary-flow resistance. Fat debris was detected on imprints in all PSB samples in contrast to venous plasma (P<.05). Study III) After 10-min of incubation had 77% of added soya oil separated and found contained in the top 20% fraction of blood (P<.001), aimed to be discarded. The density separation of human fat was less efficient compared to soya oil (P=.011). Fat also adsorbed to surface which was more pronounced at low temperature (P<.001). The overall reduction of human fat was 70%. Study IV) PSB contained 1.5 mL fat suspended in 418 mL PSB. Of this fat was 24% surface-bound. Experimental analysis of the proposed FRS revealed an 83% fat-reduction which was clinically confirmed, suggesting 80% reduction (P=.001). The FRS also gave a small but significant erythrocyte-concentrating effect. Conclusions: Transfusion of allogeneic blood during CABG surgery appeared associated with an institutional, individual, and technical bias of an anticipated need and not only used to compensation for surgical bleeding. In part may this reflect a non-compliant CPB methodology and hemodilution. It was confirmed that PSB plasma contained fat, with a suggested embolic potential. Human fat was significantly reduced from mediastinal drain blood by spontaneous density separation and surface adsorption. The prototype FRS used for PSB incubation during CPB allowed an efficient fat reduction.
|
187 |
Settlement Behavior of a Sandy Loam Due to Suction Changes Associated with Simulated Artificial Tree RootsAreghan, Joseph I 19 November 2012 (has links)
Shallow foundations rested on Leda clay that are widely distributed in Eastern Canada exhibit shrinkage characteristics and are prone to differential settlements. Due to this reason, significant repairs are necessary to the foundations and basements of residential structures constructed in Leda clay deposits. Differential settlements are commonly attributed to the changes in the natural water content of soils associated with water infiltration, evaporation or plant transpiration (i.e., tree-roots-suction). Various research studies have been undertaken to estimate the possible settlements of shallow foundations associated with the water infiltration or evaporation. Several thumb rules have been proposed through research studies, providing recommendations with respect to the distance at which trees must be planted as a function of their heights at maturity such that differential settlements can be avoided. However, limited studies have been carried out to estimate or model the settlements of shallow foundations taking into account the influence of tree-roots-suction.
In the present research program, a comprehensive experimental study regarding the deformation characteristics of a sandy loam soil from Ottawa due to tree-root-suction is undertaken, using specially designed equipment. The study has been undertaken using a sandy loam soil so that the testing program can be conducted in a shorter period of time. An artificial rooting system (ARS) was designed and placed in a specially designed tank at the University of Ottawa to simulate tree-roots-suction and measure soil surface settlements associated with a decrease in natural water content (or increase in soil suction) using particle image velocimetry (PIV) technique. The ARS consists of an artificial root, suction generator, matric suction and volumetric water content monitoring devices. The variation of matric suction and volumetric water content are monitored at various depths using the instrumentation of the ARS. Based on the results of the experimental studies, a methodology is proposed to model the settlement behaviour of sandy loam soils due to suction from ARS, using commercial finite element software, SEEP/W and SIGMA/W (i.e. software package of GeoStudio 2007). The study offers a reasonably good comparison between the measured surface settlements and those estimated using the finite element modelling analysis. The modelling methodology presented in this thesis is promising and may be extended for estimating the settlement behaviour associated with the tree roots suction of Leda clay deposits and to other soils.
|
188 |
Simple Techniques for the Implementation of the Mechanics of Unsaturated Soils into Engineering PracticeOh, Won Taek 23 November 2012 (has links)
Over the past 50 years, several advancements have been made in the research area of the mechanics of unsaturated soils. These advancements can be categorized into two groups; (i) development (or improvement) of testing techniques (or apparatus) to determine the mechanical properties of unsaturated soils and (ii) development of (numerical, empirical or semi-empirical) models to estimate the variation of mechanical properties of unsaturated soils with respect to suction based on the experimental results. Implementation of the mechanics of unsaturated soils in conventional geotechnical engineering practice, however, has been rather limited. The key reasons for the limited practical applications may be attributed to the lack of simple and reliable methods for (i) measuring soil suction in the field quickly and reliably and (ii) estimating the variation of mechanical properties of unsaturated soils with respect to suction.
The main objective of this thesis research is to develop simple and reliable techniques, models or approaches that can be used in geotechnical engineering practice to estimate sol suction and the mechanical properties of unsaturated soils. This research can be categorized into three parts.
In the First Part, simple techniques are proposed to estimate the suction values of as-compacted unsaturated fine-grained soils using a pocket penetrometer and a conventional tensiometer. The suction values less than 300 kPa can be estimated using a strong relationship between the compressive strength measured using a pocket penetrometer and matric suction value. The high suction values in the range of 1,200 kPa to 60,000 kPa can be estimated using the unique relationship between the initial tangent of conventional tensiometer response versus time behavior and suction value.
In the Second Part, approaches or semi-empirical models are proposed to estimate the variation of mechanical properties of unsaturated soils with respect to suction, which include:
- Bearing capacity of unsaturated fine-grained soils
- Variation of bearing capacity of unsaturated fine-grained soils with respect to matric suction
- Variation of initial tangent elastic modulus of unsaturated soils below shallow foundations with respect to matric suction
- Variation of maximum shear modulus with respect to matric suction for unsaturated non-plastic sandy soils (i.e. plasticity index, Ip = 0 %)
In the Third Part, approaches (or methodologies) are suggested to simulate the vertically applied stress versus surface settlement behavior of shallow foundations in unsaturated coarse-grained soils assuming elastic-perfectly plastic behavior. These methodologies are extended to simulate the stress versus settlement behavior of both model footings and in-situ plates in unsaturated coarse-grained soils.
The results show that there is a reasonably good comparison between the measured values (i.e. soil suction, bearing capacity, elastic and shear modulus) and those estimated using the techniques or models proposed in this thesis research.
The models (or methodologies) proposed in this thesis research are promising and encouraging for modeling studies and practicing engineers to estimate the variation of mechanical behavior of unsaturated soils with respect to matric suction.
|
189 |
A volume-mass constitutive model for unsaturated soilsPham, Hung Quang 22 July 2005
<p>Many geotechnical engineering problems involve combining two or more independent physical processes as a coupled solution of seepage, volume change and shear strength. For any physical process being modeled, it is desirous to be able to compute any of the volume-mass soil properties. When the volume-mass soil properties are combined with the stress state of the soil, the result is a volume-mass constitutive relationship. Three volume-mass constitutive relationships (i.e., void ratio, water content and degree of saturation) are generally viewed as being the most fundamental; however, only two of the relations are independent. The unsaturated soil properties associated with seepage, volume change and shear strength problems are also related to the volume-mass soil properties. While the unsaturated soil properties are often estimated as simply being a function of the soil-water characteristic curve, it is more accurate to define the properties in a more rigorous manner in terms of the volume-mass soil properties. The advancement of computing capabilities means that it is quite easy to formulate constitutive relations for shear strength and permeability, for example, in terms of all volume-mass properties of the unsaturated soil.</p><p>The objectives of this dissertation include: i) the development of volume-mass constitutive models for unsaturated soils; ii) the further study and verification of the volume-mass constitutive behavior of unsaturated soils; and iii) the development of techniques for visualization of volume-mass constitutive surfaces for unsaturated soils. To achieve these objectives, the present research study was conducted from both theoretical and experimental bases.</p><p>The theoretical program commenced with a comprehensive literature review of the volume-mass constitutive relationships for unsaturated soils. A new, more rigorous volume-mass constitutive model was then proposed. Appropriate terminology was introduced for the development of the model, followed by an outline of the assumptions used and the mathematical derivation. The proposed model requires conventionally obtainable soil properties for its calibration. The model is capable of predicting both the void ratio and water content constitutive relationships for various unsaturated soils, taking into account elastic and plastic volume changes. Various stress paths can be simulated and hysteresis associated with the soil-water characteristic curve can be taken into account. </p><p>Two closed-form equations for the volume-mass constitutive relationships were derived. A computer software program was written based on the theory of the proposed volume-mass constitutive model. Techniques for the visualization of the volume-mass constitutive surfaces were then presented.
An experimental program was conducted in the laboratory. The experimental program involved the verification of a new testing apparatus. Several soils were selected for testing purposes and appropriate testing procedures were established (i.e., soil specimens were initially slurry). The testing stress paths followed in the experimental program were different from most research programs conducted in the past and reported in the research literature. Conclusions regarding the compressibility, stress path dependency, and hysteretic nature of the soil-water characteristic curve of an unsaturated soil were presented.</p><p>A considerable number of test results (i.e., from both the experimental program and the research literature) were used in the verification of the new volume-mass constitutive model. This model has proven to be effective in predicting both collapse and expansion of a soil. The volume-mass constitutive model appears to predict behaviour in a satisfactory manner for a wide range of soils; however, the predictions appear to be superior for certain soils. In all cases the volume-mass predictions of the model appear to be satisfactory for geotechnical engineering practice.
|
190 |
A volume-mass constitutive model for unsaturated soilsPham, Hung Quang 22 July 2005 (has links)
<p>Many geotechnical engineering problems involve combining two or more independent physical processes as a coupled solution of seepage, volume change and shear strength. For any physical process being modeled, it is desirous to be able to compute any of the volume-mass soil properties. When the volume-mass soil properties are combined with the stress state of the soil, the result is a volume-mass constitutive relationship. Three volume-mass constitutive relationships (i.e., void ratio, water content and degree of saturation) are generally viewed as being the most fundamental; however, only two of the relations are independent. The unsaturated soil properties associated with seepage, volume change and shear strength problems are also related to the volume-mass soil properties. While the unsaturated soil properties are often estimated as simply being a function of the soil-water characteristic curve, it is more accurate to define the properties in a more rigorous manner in terms of the volume-mass soil properties. The advancement of computing capabilities means that it is quite easy to formulate constitutive relations for shear strength and permeability, for example, in terms of all volume-mass properties of the unsaturated soil.</p><p>The objectives of this dissertation include: i) the development of volume-mass constitutive models for unsaturated soils; ii) the further study and verification of the volume-mass constitutive behavior of unsaturated soils; and iii) the development of techniques for visualization of volume-mass constitutive surfaces for unsaturated soils. To achieve these objectives, the present research study was conducted from both theoretical and experimental bases.</p><p>The theoretical program commenced with a comprehensive literature review of the volume-mass constitutive relationships for unsaturated soils. A new, more rigorous volume-mass constitutive model was then proposed. Appropriate terminology was introduced for the development of the model, followed by an outline of the assumptions used and the mathematical derivation. The proposed model requires conventionally obtainable soil properties for its calibration. The model is capable of predicting both the void ratio and water content constitutive relationships for various unsaturated soils, taking into account elastic and plastic volume changes. Various stress paths can be simulated and hysteresis associated with the soil-water characteristic curve can be taken into account. </p><p>Two closed-form equations for the volume-mass constitutive relationships were derived. A computer software program was written based on the theory of the proposed volume-mass constitutive model. Techniques for the visualization of the volume-mass constitutive surfaces were then presented.
An experimental program was conducted in the laboratory. The experimental program involved the verification of a new testing apparatus. Several soils were selected for testing purposes and appropriate testing procedures were established (i.e., soil specimens were initially slurry). The testing stress paths followed in the experimental program were different from most research programs conducted in the past and reported in the research literature. Conclusions regarding the compressibility, stress path dependency, and hysteretic nature of the soil-water characteristic curve of an unsaturated soil were presented.</p><p>A considerable number of test results (i.e., from both the experimental program and the research literature) were used in the verification of the new volume-mass constitutive model. This model has proven to be effective in predicting both collapse and expansion of a soil. The volume-mass constitutive model appears to predict behaviour in a satisfactory manner for a wide range of soils; however, the predictions appear to be superior for certain soils. In all cases the volume-mass predictions of the model appear to be satisfactory for geotechnical engineering practice.
|
Page generated in 0.0611 seconds