Spelling suggestions: "subject:"[een] SYSTEM PERFORMANCE EVALUATION"" "subject:"[enn] SYSTEM PERFORMANCE EVALUATION""
11 |
A Multi-physics Framework for Wearable Microneedle-based Therapeutic Platforms: From Sensing to a Closed-Loop Diabetes Management.Marco Fratus (19193188) 22 July 2024 (has links)
<p dir="ltr">Ultra-scaled, always-on, smart, wearable and implantable (WI) therapeutic platforms define the research frontier of modern personalized medicine. The WI platform integrates real-time sensing with on-demand therapy and is ideally suited for real-time management of chronic diseases like diabetes. Traditional blood tracking methods, such as glucometers, are insufficient due to their once-in-a-while measurements and the imprecision of insulin injections, which can lead to severe complications. To address these challenges, researchers have been developing smart and minimally invasive microneedle (MN) components for pain-free glucose detection and drug delivery, potentially functioning as an "artificial pancreas". Inspired by natural body homeostasis, these platforms must be accurate and responsive for immediate corrective interventions. However, artificial MN patches often have slow readings due to factors like MN morphology and composition that remain poorly understood, hindering their optimization and integration into real-time monitoring devices. Despite extensive, iterative experimental efforts worldwide, a holistic framework incorporating the interaction between MN sensing and therapy with fluctuating natural body functions is missing. In this thesis, we propose a generalized framework for glycemic management based on the interaction between biological processes and MN-based operations. The results, incorporating theoretical insights from the 1960s and recent advancements in MN technology, are platform-agnostic. This generality offers a unique template to interpret experimental observations, justify the recent introduction of drugs like GLP-1 cocktails, and optimize platforms for accurate and fast disease management. </p>
|
12 |
RELIABLE SENSING WITH UNRELIABLE SENSORS: FROM PHYSICAL MODELING TO DATA ANALYSIS TO APPLICATIONSAjanta Saha (19827849) 10 October 2024 (has links)
<p dir="ltr">In today’s age of information, we are constantly informed about our surroundings by the network of distributed sensors to decide the next action. One major class of distributed sensors is wearable, implantable, and environmental (WIE) electrochemical sensors, widely used for analyte concentration measurement in personalized healthcare, environmental monitoring, smart agriculture, food, and chemical industries. Although WIE sensors offer an opportunity for prompt and prudent decisions, reliable sensing with such sensors is a big challenge. Among them, one is uncontrolled outside environment. Rapidly varying temperature, humidity, and target concentration increase noise and decrease the data reliability of the sensors. Second, because they are closely coupled to the physical world, they are subject to biofouling, radiation exposure, and water ingress which causes physical degradation. Moreover, to correct the drift due to degradation, frequent calibration is not possible once the sensor is deployed in the field. Another challenge is the energy supply needed to support the autonomous WIE sensors. If the sensor is wireless, it must be powered by a battery or an energy harvester. Unfortunately, batteries have limited lifetime and energy harvesters cannot supply power on-demand limiting their overall operation.</p><p dir="ltr">The objective of this thesis is to achieve reliable sensing with WIE sensors by overcoming the challenges of uncontrolled environment, drift or degradation, and calibration subject to limited power supplies. First, we have developed a concept of “Nernst thermometry” for potentiometric ion-selective electrodes (ISE) with which we have self-corrected concentration fluctuation due to uncontrolled temperature. Next, by using “Nernst thermometry,” we have developed a physics-guided data analysis method for drift detection and self-calibration of WIE ISE. For WIE sensor, wireless data transmission is an energy-intensive operation. To reduce unreliable data transmission, we have developed a statistical approach to monitor the credibility of the sensor continuously and transmit only credible sensor data. To understand and monitor the cause of ISE degradation, we have proposed a novel on-the-fly equivalent circuit extraction method that does not require any external power supply or complex measurements. To ensure an on-demand power supply, we have presented the concept of “signal as a source of energy.” By circuit simulation and long-term experimental analysis, we have shown that ISE can indefinitely sense and harvest energy from the analyte. We have theoretically calculated the maximum achievable power with such systems and presented ways to achieve it practically. Overall, the thesis presents a holistic approach to developing a self-sustainable WIE sensor with environmental variation correction, self-calibration, reliable data transmission, and lifelong self-powering capabilities, bringing smart agriculture and environmental sensing one step closer to reality.</p>
|
13 |
Enhancing Creative, Learning and Collaborative Experiences through Augmented Reality-compatible Internet-of-Things DevicesPashin Farsak Raja (15348238) 29 April 2023 (has links)
<p>The "Maker Movement" is a cultural phenomena rooted in DIY culture, which stresses making devices and creations on your own rather than purchasing it ready-made. At the core of the Maker Movement, is the "Maker Mindset"; a collection of attitudes, beliefs and behaviors that emphasize the importance of creativity, experimentation and innovation in the learning process. Since the Maker Mindset embodies constructionist principles at its core that push makers to experiment and problem-solve by collaborating with fellow makers through hands-on activities, it can be said that these activities comprise of Creative, Learning and Collaborative experiences. While Internet-of-Things devices have long been used to enhance these activities, research pertaining to using Augmented Reality in tandem with IoT for the purpose of enhancing experiences core to the Maker Mindset is relatively unexplored. Three different systems were developed with the goal of addressing this -- MicrokARts, ShARed IoT and MechARspace. Each system focuses on enhancing one of the three core experiences through AR-compatible IoT devices, whilst ensuring that they do not require prerequisite knowledge in order to author AR experiences. These systems were evaluated through user studies and testing over a variety of age-groups, with each system successfully enhancing one core experience each through the use of AR-IoT interactions.</p>
|
Page generated in 0.0593 seconds