• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 39
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 182
  • 182
  • 76
  • 70
  • 56
  • 54
  • 41
  • 38
  • 38
  • 35
  • 28
  • 28
  • 25
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Classificação de textos usando ontologias

Guevara, Juan Florencio Valdivia January 2016 (has links)
Orientadora: Profa. Dra. Debora Maria Rossi de Medeiros / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência da Computação, 2016. / Em diversos domínios de conhecimento, uma das principais forma de divulgação de informação é por meio de documentos de texto. Exemplos são websites, artigos científicos, blogs, postagens em redes sociais e reviews de produtos/serviços. Dessa forma, extrair automaticamente informações desse tipo de fonte de dados se torna uma importante tarefa. Uma das formas mais clássicas de extração de informação de documentos textuais é chamada de classificação. Esta tarefa consiste de atribuir automaticamente a categoria a qual um texto pertence, com base em um conjunto de textos previamente categorizado. Extrair informação de documentos textuais é, em geral, uma tarefa desafiadora por lidar com uma forma não estruturada de dados, uma vez que uma mesma informação pode ser expressa de diversas manerias. Neste contexto, uma ontologia pode representar uma ferramenta poderosa para auxiliar a tarefa de extração de informação de textos. Ontologias são, em linhas gerais, dicionários de conceitos conectados por meio de relações semânticas. Este trabalho investiga o uso de ontologias na tarefa de classificação de textos. Foi proposta uma abordagem onde são criados novos atributos para descrever os textos de uma base com base nos conceitos de uma ontologia. Foram realizados experimentos com bases de textos benchmark amplamente utilizadas pela comunidade científica. Em geral, a abordagem proposta proporcionou vantagem em relação à abordagem convencional em cenários específicos. Esses cenários indicam uma região de potencias da nova abordagem que será melhor explorada em trabalhos futuros. / In several knowledge areas, one of the main forms of spreading information is through textual documents. Some examples are websites, scientific papers, blogs, social media posts and product/service reviews. Thus, automatically extracting information from this type of data becomes an important task. One of the most classic information extraction task is text classification. This task consists of automatically assigning the category to which a text belongs, based on a previously categorized text set. Extracting information from textual data is, in general, a challenging task because it deals with unstructured data, once the same piece of information can be expressed by different ways. In this context, an ontology may be a powerful tool to aid information extraction from texts. In a nutshell, ontologies are dictionaries of concepts linked according to semantic relations. This project studies the usage of ontologies in the task of text classification. We proposed an approach where new features for describing the texts based on an ontology concepts. Experiments with benchmark text bases, widely employed by scientific community. In general, the proposed approach overcomes the conventional approach in specific scenarios. These scenarios point to potential areas where the new approach will be better explored in future work.
42

Disaster tweet classification using parts-of-speech tags: a domain adaptation approach

Robinson, Tyler January 1900 (has links)
Master of Science / Department of Computer Science / Doina Caragea / Twitter is one of the most active social media sites today. Almost everyone is using it, as it is a medium by which people stay in touch and inform others about events in their lives. Among many other types of events, people tweet about disaster events. Both man made and natural disasters, unfortunately, occur all the time. When these tragedies transpire, people tend to cope in their own ways. One of the most popular ways people convey their feelings towards disaster events is by offering or asking for support, providing valuable information about the disaster, and voicing their disapproval towards those who may be the cause. However, not all of the tweets posted during a disaster are guaranteed to be useful or informative to authorities nor to the general public. As the number of tweets that are posted during a disaster can reach the hundred thousands range, it is necessary to automatically distinguish tweets that provide useful information from those that don't. Manual annotation cannot scale up to the large number of tweets, as it takes significant time and effort, which makes it unsuitable for real-time disaster tweet annotation. Alternatively, supervised machine learning has been traditionally used to learn classifiers that can quickly annotate new unseen tweets. But supervised machine learning algorithms make use of labeled training data from the disaster of interest, which is presumably not available for a current target disaster. However, it is reasonable to assume that some amount of labeled data is available for a prior source disaster. Therefore, domain adaptation algorithms that make use of labeled data from a source disaster to learn classifiers for the target disaster provide a promising direction in the area of tweet classification for disaster management. In prior work, domain adaptation algorithms have been trained based on tweets represented as bag-of-words. In this research, I studied the effect of Part of Speech (POS) tag unigrams and bigrams on the performance of the domain adaptation classifiers. Specifically, I used POS tag unigram and bigram features in conjunction with a Naive Bayes Domain Adaptation algorithm to learn classifiers from source labeled data together with target unlabeled data, and subsequently used the resulting classifiers to classify target disaster tweets. The main research question addressed through this work was if the POS tags can help improve the performance of the classifiers learned from tweet bag-of-words representations only. Experimental results have shown that the POS tags can improve the performance of the classifiers learned from words only, but not always. Furthermore, the results of the experiments show that POS tag bigrams contain more information as compared to POS tag unigrams, as the classifiers learned from bigrams have better performance than those learned from unigrams.
43

A Study of Text Mining Framework for Automated Classification of Software Requirements in Enterprise Systems

January 2016 (has links)
abstract: Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of classification of software requirements statements into categories easily comprehensible for developers for faster development and delivery, which till now was mostly done manually by software engineers - indeed a tedious job. However, most of the research was focused on classification of Non-functional requirements pertaining to intangible features such as security, reliability, quality and so on. It is indeed a challenging task to automatically classify functional requirements, those pertaining to how the system will function, especially those belonging to different and large enterprise systems. This requires exploitation of text mining capabilities. This thesis aims to investigate results of text classification applied on functional software requirements by creating a framework in R and making use of algorithms and techniques like k-nearest neighbors, support vector machine, and many others like boosting, bagging, maximum entropy, neural networks and random forests in an ensemble approach. The study was conducted by collecting and visualizing relevant enterprise data manually classified previously and subsequently used for training the model. Key components for training included frequency of terms in the documents and the level of cleanliness of data. The model was applied on test data and validated for analysis, by studying and comparing parameters like precision, recall and accuracy. / Dissertation/Thesis / Masters Thesis Engineering 2016
44

A comperative study of text classification models on invoices : The feasibility of different machine learning algorithms and their accuracy

Ekström, Linus, Augustsson, Andreas January 2018 (has links)
Text classification for companies is becoming more important in a world where an increasing amount of digital data are made available. The aim is to research whether five different machine learning algorithms can be used to automate the process of classification of invoice data and see which one gets the highest accuracy. Algorithms are in a later stage combined for an attempt to achieve higher results. N-grams are used, and results are compared in form of total accuracy of classification for each algorithm. A library in Python, called scikit-learn, implementing the chosen algorithms, was used. Data is collected and generated to represent data present on a real invoice where data has been extracted. Results from this thesis show that it is possible to use machine learning for this type of problem. The highest scoring algorithm (LinearSVC from scikit-learn) classifies 86% of all samples correctly. This is a margin of 16% above the acceptable level of 70%.
45

Análise de sentimentos baseada em aspectos e atribuições de polaridade / Aspect-based sentiment analysis and polarity assignment

Kauer, Anderson Uilian January 2016 (has links)
Com a crescente expansão da Web, cada vez mais usuários compartilham suas opiniões sobre experiências vividas. Essas opiniões estão, na maioria das vezes, representadas sob a forma de texto não estruturado. A Análise de Sentimentos (ou Mineração de Opinião) é a área dedicada ao estudo computacional das opiniões e sentimentos expressos em textos, tipicamente classificando-os de acordo com a sua polaridade (i.e., como positivos ou negativos). Ao mesmo tempo em que sites de vendas e redes sociais tornam-se grandes fontes de opiniões, cresce a busca por ferramentas que, de forma automática, classifiquem as opiniões e identifiquem a qual aspecto da entidade avaliada elas se referem. Neste trabalho, propomos métodos direcionados a dois pontos fundamentais para o tratamento dessas opiniões: (i) análise de sentimentos baseada em aspectos e (ii) atribuição de polaridade. Para a análise de sentimentos baseada em aspectos, desenvolvemos um método que identifica expressões que mencionem aspectos e entidades em um texto, utilizando ferramentas de processamento de linguagem natural combinadas com algoritmos de aprendizagem de máquina. Para a atribuição de polaridade, desenvolvemos um método que utiliza 24 atributos extraídos a partir do ranking gerado por um motor de busca e para gerar modelos de aprendizagem de máquina. Além disso, o método não depende de recursos linguísticos e pode ser aplicado sobre dados com ruídos. Experimentos realizados sobre datasets reais demonstram que, em ambas as contribuições, conseguimos resultados próximos aos dos baselines mesmo com um número pequeno de atributos. Ainda, para a atribuição de polaridade, os resultados são comparáveis aos de métodos do estado da arte que utilizam técnicas mais complexas. / With the growing expansion of the Web, more and more users share their views on experiences they have had. These views are, in most cases, represented in the form of unstructured text. The Sentiment Analysis (or Opinion Mining) is a research area dedicated to the computational study of the opinions and feelings expressed in texts, typically categorizing them according to their polarity (i.e., as positive or negative). As on-line sales and social networking sites become great sources of opinions, there is a growing need for tools that classify opinions and identify to which aspect of the evaluated entity they refer to. In this work, we propose methods aimed at two key points for the treatment of such opinions: (i) aspect-based sentiment analysis and (ii) polarity assignment. For aspect-based sentiment analysis, we developed a method that identifies expressions mentioning aspects and entities in text, using natural language processing tools combined with machine learning algorithms. For the identification of polarity, we developed a method that uses 24 attributes extracted from the ranking generated by a search engine to generate machine learning models. Furthermore, the method does not rely on linguistic resources and can be applied to noisy data. Experiments on real datasets show that, in both contributions, our results using a small number of attributes were similar to the baselines. Still, for assigning polarity, the results are comparable to prior art methods that use more complex techniques.
46

Text Classification of Legitimate and Rogue online Privacy Policies : Manual Analysis and a Machine Learning Experimental Approach

Rekanar, Kaavya January 2016 (has links)
No description available.
47

Classificação de textos com redes complexas / Using complex networks to classify texts

Diego Raphael Amancio 29 October 2013 (has links)
A classificação automática de textos em categorias pré-estabelecidas tem despertado grande interesse nos últimos anos devido à necessidade de organização do número crescente de documentos. A abordagem dominante para classificação é baseada na análise de conteúdo dos textos. Nesta tese, investigamos a aplicabilidade de atributos de estilo em tarefas tradicionais de classificação, usando a modelagem de textos como redes complexas, em que os vértices representam palavras e arestas representam relações de adjacência. Estudamos como métricas topológicas podem ser úteis no processamento de línguas naturais, sendo a tarefa de classificação apoiada por métodos de aprendizado de máquina, supervisionado e não supervisionado. Um estudo detalhado das métricas topológicas revelou que várias delas são informativas, por permitirem distinguir textos escritos em língua natural de textos com palavras distribuídas aleatoriamente. Mostramos também que a maioria das medidas de rede depende de fatores sintáticos, enquanto medidas de intermitência são mais sensíveis à semântica. Com relação à aplicabilidade da modelagem de textos como redes complexas, mostramos que existe uma dependência significativa entre estilo de autores e topologia da rede. Para a tarefa de reconhecimento de autoria de 40 romances escritos por 8 autores, uma taxa de acerto de 65% foi obtida com métricas de rede e intermitência de palavras. Ainda na análise de estilo, descobrimos que livros pertencentes ao mesmo estilo literário tendem a possuir estruturas topológicas similares. A modelagem de textos como redes também foi útil para discriminar sentidos de palavras ambíguas, a partir apenas de informação topológica dos vértices, evidenciando uma relação não trivial entre sintaxe e semântica. Para algumas palavras, a discriminação com redes complexas foi ainda melhor que a estratégia baseada em padrões de recorrência contextual de palavras polissêmicas. Os estudos desenvolvidos nesta tese confirmam que aspectos de estilo e semânticos influenciam na organização estrutural de conceitos em textos modelados como rede. Assim, a modelagem de textos como redes de adjacência de palavras pode ser útil não apenas para entender mecanismos fundamentais da linguagem, mas também para aperfeiçoar aplicações reais quando combinada com métodos tradicionais de processamento de texto. / The automatic classification of texts in pre-established categories is drawing increasing interest owing to the need to organize the ever growing number of electronic documents. The prevailing approach for classification is based on analysis of textual contents. In this thesis, we investigate the applicability of attributes based on textual style using the complex network (CN) representation, where nodes represent words and edges are adjacency relations. We studied the suitability of CN measurements for natural language processing tasks, with classification being assisted by supervised and unsupervised machine learning methods. A detailed study of topological measurements in texts revealed that several measurements are informative in the sense that they are able to distinguish meaningful from shuffled texts. Moreover, most measurements depend on syntactic factors, while intermittency measurements are more sensitive to semantic factors. As for the use of the CN model in practical scenarios, there is significant correlation between authors style and network topology. We achieved an accuracy rate of 65% in discriminating eight authors of novels with the use of network and intermittency measurements. During the stylistic analysis, we also found that books belonging to the same literary movement could be identified from their similar topological features. The network model also proved useful for disambiguating word senses. Upon employing only topological information to characterize nodes representing polysemous words, we found a strong relationship between syntax and semantics. For several words, the CN approach performed surprisingly better than the method based on recurrence patterns of neighboring words. The studies carried out in this thesis confirm that stylistic and semantic aspects play a crucial role in the structural organization of word adjacency networks. The word adjacency model investigated here might be useful not only to provide insight into the underlying mechanisms of the language, but also to enhance the performance of real applications implementing both CN and traditional approaches.
48

Automating Text Categorization with Machine Learning : Error Responsibility in a multi-layer hierarchy

Helén, Ludvig January 2017 (has links)
The company Ericsson is taking steps towards embracing automating techniques and applying them to their product development cycle. Ericsson wants to apply machine learning techniques to automate the evaluation of a text categorization problem of error reports, or trouble reports (TRs). An excess of 100,000 TRs are handled annually. This thesis presents two possible solutions for solving the routing problems where one technique uses traditional classifiers (Multinomial Naive Bayes and Support Vector Machines) for deciding the route through the company hierarchy where a specific TR belongs. The other solution utilizes a Convolutional Neural Network for translating the TRs into low-dimensional word vectors, or word embeddings, in order to be able to classify what group within the company should be responsible for the handling of the TR. The traditional classifiers achieve up to 83% accuracy and the Convolutional Neural Network achieve up to 71% accuracy in the task of predicting the correct class for a specific TR.
49

Translationese and Swedish-English Statistical Machine Translation

Joelsson, Jakob January 2016 (has links)
This thesis investigates how well machine learned classifiers can identify translated text, and the effect translationese may have in Statistical Machine Translation -- all in a Swedish-to-English, and reverse, context. Translationese is a term used to describe the dialect of a target language that is produced when a source text is translated. The systems trained for this thesis are SVM-based classifiers for identifying translationese, as well as translation and language models for Statistical Machine Translation. The classifiers successfully identified translationese in relation to non-translated text, and to some extent, also what source language the texts were translated from. In the SMT experiments, variation of the translation model was whataffected the results the most in the BLEU evaluation. Systems configured with non-translated source text and translationese target text performed better than their reversed counter parts. The language model experiments showed that those trained on known translationese and classified translationese performed better than known non-translated text, though classified translationese did not perform as well as the known translationese. Ultimately, the thesis shows that translationese can be identified by machine learned classifiers and may affect the results of SMT systems.
50

A Multi-label Text Classification Framework: Using Supervised and Unsupervised Feature Selection Strategy

Ma, Long 08 August 2017 (has links)
Text classification, the task of metadata to documents, requires significant time and effort when performed by humans. Moreover, with online-generated content explosively growing, it becomes a challenge for manually annotating with large scale and unstructured data. Currently, lots of state-or-art text mining methods have been applied to classification process, many of them based on the key word extraction. However, when using these key words as features in classification task, it is common that feature dimension is huge. In addition, how to select key words from tons of documents as features in classification task is also a challenge. Especially when using tradition machine learning algorithm in the large data set, the computation cost would be high. In addition, almost 80% of real data is unstructured and non-labeled. The advanced supervised feature selection methods cannot be used directly in selecting entities from massive of data. Usually, extracting features from unlabeled data for classification tasks, statistical strategies have been utilized to discover key features. However, we propose a nova method to extract important features effectively before feeding them into the classification assignment. There is another challenge in the text classification is the multi-label problem, the assignment of multiple non-exclusive labels to the documents. This problem makes text classification more complicated when compared with single label classification. Considering above issues, we develop a framework for extracting and eliminating data dimensionality, solving the multi-label problem on labeled and unlabeled data set. To reduce data dimension, we provide 1) a hybrid feature selection method that extracts meaningful features according to the importance of each feature. 2) we apply the Word2Vec to represent each document with a lower feature dimension when doing the document categorization for the big data set. 3) An unsupervised approach to extract features from real online generated data for text classification and prediction. On the other hand, to solve the multi-label classification task, we design a new Multi-Instance Multi-Label (MIML) algorithm in the proposed framework.

Page generated in 0.044 seconds