• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 16
  • 16
  • 7
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 129
  • 31
  • 24
  • 19
  • 18
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of suitability of water hyacinth as feedstock for bio-energy production / Cornelis JohannesJ. Schabort

Schabort, Cornelis Johannes January 2014 (has links)
The suitability of water hyacinth (Eichornia crassipes) as a viable feedstock for renewable energy production was investigated in this project. Water hyacinth used in this study was harvested from the Vaal River near Parys in the northwest region of the Free State province, South Africa (26°54′S 27°27′E). The wet plants were processed in the laboratory at the North-West University by separating the roots from the leaves and the stems, thus obtaining two separate water hyacinth feedstock. Characterisation of the feedstock showed that the stems and leaves are more suitable for bio-energy production than roots, due to the higher cellulose and hemicellulose content and very low lignin content of the stems and leaves. Water hyacinth was evaluated as feedstock for the production of bio-ethanol gel, bio-ethanol, bio-oil and bio-char. The recovery of water from the wet plants for use in bio-refining or for use as drip-irrigation in agriculture was also investigated. Cellulose was extracted from water hyacinth feedstock to be used as a gelling agent for the production of ethanol-gel fuel. A yield of 200 g cellulose/kg dry feedstock was obtained. The extracted cellulose was used to produce ethanol-gel with varying water content. The gel with properties closest to the SANS 448 standard contained 90 vol% ethanol and 10 vol% water, with 38 wt% cellulose. This gel was found to ignite readily and burn steadily, without flaring, sudden deflagrations, sparking, splitting, popping, dripping or exploding from ignition until it had burned to extinction, as required by SANS 448. The only specifications that could not be met were the viscosity (23,548 cP) and the high waste residue (32 wt%) left after burning. The other major concern is the extremely high costs involved with the manufacturing of ethanol-gel from water hyacinth cellulose. It can be concluded that ethanol-gel cannot be economically produced using water hyacinth as feedstock. Chemical and enzymatic extraction of water from the feedstock, which is stems and leaves or roots, showed that the highest yield of water was obtained using a combination of Celluclast 1.5 L, Pectinex Ultra SP-L and additional de-ionised water. A yield of 0.89 ± 0.01 gwater/gwater in biomass was realised. This is, however, only 0.86 wt% higher than the highest yield obtained (0.87 ± 0.01 gwater/gwater in biomass) using only Pectinex Ultra SP-L and de-ionised water. It is recommended to use only Pectinex Ultra SP-L and de-ionised water at a pH of 3.5 and a temperature of 40°C. Using one enzyme instead of two reduces operating costs and simplifies the chemical extraction process. The extracted water, both filtered and unfiltered, was not found to be suitable for domestic use without further purification to reduce the total dissolved solids (TDS), potassium and manganese levels. Both the unfiltered and filtered water were, however, found to be suitable for industrial and agricultural purposes, except for the high TDS levels. If the TDS and suspended particle level can be reduced, the extracted water would be suitable for domestic, industrial and agricultural use. The potential fermentation of the sugars derived from the water hyacinth, using ultrasonic pretreatment, was investigated. Indirect ultrasonic treatment (ultrasonic bath) proved to be a better pretreatment method than direct sonication (ultrasonic probe). The optimum sugar yield for the ultrasonic bath pretreatment with 5% NaOH was found to be 0.15 g sugar/g biomass (0.47 g sugar/g available sugar) using an indirect sonication energy input of 27 kJ/g biomass. The optimum sugar yield is lower than those reported in other studies using different pretreatment methods. Theoretically a maximum of 0.24 g ethanol can be obtained per g available sugar. This relates to an ethanol yield of 0.08 g ethanol/kg wet biomass. The low yield implies that ethanol production from water hyacinth is not economically feasible. The production of bio-oil and bio-char from water hyacinth through thermochemical liquefaction of wet hyacinth feedstock was investigated. An optimum bio-char yield of 0.55 g bio-char/g biomass was achieved using an inert atmosphere (nitrogen) at 260°C and the stems and leaves as feedstock. With the roots as feedstock a slightly lower optimum yield of 0.45 g bio-char/g biomass was found using a non-reducing atmosphere (carbon monoxide) at 280°C. The bio-oil yield was too low to accurately quantify. As water is required during thermochemical liquefaction, it was found unnecessary to dry the biomass to the same extent as was the case with the pretreatment and fermentation of the water hyacinth, making this a more feasible route for biofuel production. Bio-char produced through liquefaction of roots as the feedstock and leaves and stems as the other feedstock had a higher heating value (HHV) of 10.89 ± 0.45 MJ/kg and 23.31 ± 0.45 MJ/kg respectively. Liquefaction of water hyacinth biomass increased the HHV of the feedstock to a value comparable to that of low grade coal. This implies a possible use of water hyacinth for co-gasification. The most effective route for bio-energy production in the case of water hyacinth was found to be thermochemical liquefaction (12.8 MJ/kg wet biomass). Due to the high production costs involved, it is recommended to only use water hyacinth as a feedstock for biofuel production if no alternative feedstock are available. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2014
12

Shape memory alloys and their application to actuators for deployable structures

Huang, Weimin January 1998 (has links)
No description available.
13

Biomass utilization for energy purposes in Kenya : Fuel characteristics and thermochemical properties

García López, Natxo January 2016 (has links)
Around forty percent of the world´s population, mostly inhabitants of countries with developing economies, rely on the traditional usage of biomass for energy purposes. The major negative consequences are environmental and health effects. Additionally, the most remarkable social consequence is rural poverty which is directly linked to lack of access to electricity. This places the questions related to biomass utilization for energy production at the core of global welfare. The present work was performed as a part of a larger research project funded by Formas and which involves Swedish and Kenyan partners. The aim of this study was to gather basic knowledge about the characteristics of relevant biomass from sub-Saharan Africa, more specifically from Kenya. Eight different types of biomass, including agroforestry trees, agricultural residues, and water hyacinth, were evaluated according to fuel characteristics and thermochemical properties. Ultimate and proximate analyses of the collected biomass were carried out, in addition to heating values analyses. Moreover, the biomass was pelletized and a thermogravimetric analysis was performed in a single pellet reactor.  Finally, the composition of the residual ashes was determined. The results show that there was a large variation in the fuel characteristics and thermochemical behaviour of the studied agricultural residues and water hyacinth biomass types, whereas agroforestry trees had rather similar properties and thermochemical behaviour when combusted at the same temperature. In addition, results from the ash composition analyses showed large differences among the studied biomass types, which can be used to better predict and solve problems related to the combustion of these biomass types.
14

Estudo do comportamento tribológico de aços tratados termoquimicamente lubrificados com biofluidos e óleo mineral / Study of the tribological behavior of thermochemically treated steels lubricated with mineral oil and biofluids

Souza, Dyego Monteiro de 09 December 2013 (has links)
Tratamentos termoquímicos são processos utilizados pela indústria em componentes de sistemas mecânicos com o intuito de melhorar as suas propriedades superficiais, em especial o desempenho em desgaste. Esses sistemas são utilizados em conjunto com lubrificantes em máquinas e equipamentos dos mais variados tipos. Normalmente os lubrificantes mais usados em função do seu bom desempenho, são de base mineral. Entretanto, há vários estudos propondo o uso de lubrificantes de base vegetal mas pouco se conhece da interação da superfície com esses biofluidos. Sendo assim é importante se identificar como uma superfície tratada ou não, irá interagir com os diferentes tipos de lubrificantes. Dentro deste escopo, este trabalho se propõe a comparar a resposta tribológica de superfícies tratadas termoquimicamente ou não quando lubrificada com biofluidos e com óleos derivados de petróleo. O estudo foi realizado por meio do método \"ball-cratering test\". Como corpos de prova, foram utilizados pastilhas de aço AISI 4140 submetidas aos tratamentos termoquímicos de nitretação e nitrocementação e também sem tratamento além de partilhas de aço LN28 cementadas, como contracorpo foi utilizado uma esfera de aço AISI 52100 adquiridas comercialmente. Três tipos de óleos lubrificantes foram utilizados: óleo mineral, óleo de mamona e óleo de soja epoxidado. Com intuito de analisar os resultados obtidos nestes ensaios, foi calculado o volume desgastado de material nas amostras, e após a realização destes ensaios foi analisada a superfície dos corpos de prova em microscópio óptico, MEV e AFM. Foi medida também a molhabilidade dos lubrificantes nas superfícies estudadas. Os materiais submetidos a tratamento termoquímico apresentaram um melhor desempenho tribológico na maioria dos testes. Assim também, o óleo mineral, que apesar de possuir uma viscosidade inferior aos óleos vegetais utilizados, apresentou um melhor desempenho devido as propriedades inerentes a este tipo de lubrificante. / Thermochemical processes are used in the industry to improve the surface properties of the components of mechanical systems. In such systems lubrication are very important as well. Most common lubricants are mineral oil based but there are several studies analyzing performance of lubricants formulated from vegetable oils. However there are few studies about the interaction between surface and biofluids. It is important to know the behavior of the modified surface by thermochemical treatments interacting with different lubricants. In order to address this subject this study proposed to compare tribological behavior of surfaces modified by thermochemically and not modified when different lubricants are acting in the surface. Lubricants used were vegetable based (castor oil and epoxidized soybean oil) and mineral based (paraffinic oil). Tribological studies were performed by ball cratering test using samples from SAE 4140 submitted to nitriding and nitrocarburizing against AISI 52100 spheres. It was also tested samples from carburized LN 28 steel. Worn volume were calculated and characterization of the crater after test were made using SEM and AFM. Wetting was also measured for the different surface condition and lubricants. Results showed better performance of the modified surfaces using mineral oil as lubricant despite their lower viscosities.
15

Coproduction of biofuels and biochar by slow pyrolysis in a rotary kiln

Roy-Poirier, Audrey January 2016 (has links)
Biochar has been heralded as a promising technology for climate change mitigation that can also benefit soils. Biochar is a carbonaceous solid produced by pyrolysis of biomass – the thermal decomposition of plant and plant-derived matter in the absence of oxygen. When added to soils, biochar has the potential to increase crop yields and suppress soil emissions of greenhouse gases, whilst sequestering carbon in a stable form. In addition to biochar, biomass pyrolysis produces liquids and gases that can serve as biofuels. Biochar production systems that generate excess heat or power are particularly environmentally and economically attractive. Rotary kilns are the favoured process reactor in many industries, given their potential to handle a wide range of feedstocks and provide good process control. This thesis investigates the potential to coproduce biochar and excess biofuels by slow pyrolysis in a pilot-scale rotary kiln. The work attempts to progress towards the ultimate aim of scaling up the rotary kiln and optimising its operating conditions to produce biochar of good quality along with an excess of useful biofuels. Experimental work, involving the development and application of new methodologies, was used to gain a better understanding of the process. The data gathered were then used to support preliminary numerical simulation efforts towards the development of a comprehensive process model. Five biomass feedstocks were considered: softwood pellets, miscanthus straw pellets, wheat straw pellets, oilseed rape straw pellets and raw rice husks. The granular flow of biomass feedstocks was observed in a short closed drum faced with acrylic and resting on rollers. All pelletized feedstocks displayed similar angles of repose, validating the use of softwood pellets as a model biomass for these feedstocks. Bed mixing, which can improve product uniformity, was slow under typical operating conditions, requiring 5 min to complete at 4 rpm for softwood pellets. Mixing quickened considerably at higher rotation rates. A digital image analysis method was developed to measure the distribution of solid residence times inside the rotary kiln. The mean residence time of softwood pellets ranged from 19 to 37 min under typical operating conditions, decreasing with increases in kiln rotation rate, but mostly unaffected by feeding rates. These findings show that kiln rotation rates must be selected to balance the residence time of solids inside the kiln with bed mixing levels. Thermogravimetry and differential scanning calorimetry were performed on samples of ground softwood pellets under five different heating profiles to study the kinetics and heat flows of the pyrolysis process. Both exothermic and endothermic regions were identified, with most reactions taking place between 250°C and 500°C. Results suggest that exothermic pyrolysis reactions can be promoted by altering the process heating rate, thereby improving net biofuel yield from the process. The thermogravimetric data collected was used to develop a distributed activation energy model (DAEM) of the kinetics of softwood pellet pyrolysis for integration into a comprehensive model of the process. The applicability of the kinetic model to large-scale processes was confirmed using a simplified process model developed to simulate biomass pyrolysis inside the pilot-scale rotary kiln. Although crude, the simplified process model produced sufficiently accurate estimates of char yield for preliminary design purposes. The simplified model also allowed important process parameters, such as kiln filling degree, solid residence time and heating rate, to be evaluated. A series of pyrolysis experiments was performed on the pilot-scale rotary kiln to evaluate the yields of biochar and biofuels and determine the temperature profile inside the kiln. This work required the design of a suspended thermocouple system that measures temperatures along the kiln, both in the gas phase and inside the solid bed. For most experiments at 550°C, a region of high temperature gas and solids was observed, possibly indicative of exothermic reactions. Biochar yield varied from 18% to 73% over the range of feedstocks and operating conditions tested. A vapour sampling methodology that relies on the use of a tracer gas was developed to determine the yield of pyrolysis liquids and gases. Due to analytical difficulties, it was not possible to obtain accurate mass closure with this method. However, the methodology revealed significant air ingress into the pilot-scale rotary kiln that is responsible for partially combusting biofuels produced by the process, thereby reducing their calorific value. Energy balances on the kiln confirmed that the calorific content of pyrolysis liquids and gases exceeds the energetic demand of the process, yielding between 0.3 and 11 MJ in excess biofuels per kg of biomass feedstock. An attempt was made to develop a multiphase model of the flow of vapours and solids inside the rotary kiln using computational fluid dynamics (CFD), but the continuous modelling approach was found inadequate to simulate the dense bed of biomass inside the kiln. The discrete element method (DEM) was sought as an alternative to model the granular flow of biomass inside the kiln. Extensive parameter calibration was required to reproduce the experimental behaviour of softwood pellets observed in the short closed drum. A model of the pilot-scale rotary kiln was constructed to simulate particle residence times. Further parameter calibration was required to replicate softwood pellet holdup inside the kiln. The calibrated model was able to reproduce the mean residence time of softwood pellets within 10% under different kiln operating conditions. However, simulated residence time distributions could not be established as a result of the long execution times required for this modelling work. Few data are currently available on large-scale continuous biomass pyrolysis processes; the experimental data gathered in this thesis help to fill this gap. Along with the numerical simulation work presented herein, they provide the foundation for the development of a comprehensive model of biomass pyrolysis in rotary kilns. Such a numerical model would prove invaluable in scaling up the process and maximizing its efficiency. Future work should consider the agronomic value and carbon sequestration potential of biochar produced under different operating conditions. In addition, the performance and efficiency of different conversion technologies for generating heat and power from biofuels need to be investigated.
16

EVALUATION OF WHITE ROT FUNGUS AS A PRETREATMENT FOR THERMOCHEMICAL PROCESSING OF SWITCHGRASS

Embry, Melody 01 January 2018 (has links)
Hydrothermal liquefaction is a thermochemical technique for obtaining crude bio-oil from lignocellulosic biomass with moderate temperature and pressure. The crude bio-oil can then be upgraded to various biofuels and bioproducts. Hydrothermal liquefaction is amenable to use of biomass feedstocks that have high-moisture. The overall goal of this research is to demonstrate the effectiveness of white rot fungus (WRF) as a pretreatment option in the production of bio-oil from switchgrass through hydrothermal liquefaction. If WRF is an effective pretreatment, it could be a cost-effective option for commercialization, allowing hydrothermal liquefaction to be used on an industrial scale to produce high quality bio-oil capable of replacing some of the fossil fuel liquids used today. This thesis specifically focuses on the investigation of the effects of particle size and culture time on lignin degradation using Phanerochaete chrysosporium as a pretreatment method on switchgrass. In addition, the conversion efficiency of WRF treated switchgrass was compared to that of torrefied switchgrass and untreated switchgrass after the pyrolysis conversion process. The results indicate that WRF outperforms torrefaction as a pretreatment method for the conversion of sugar-based components, thus may be an attractive alternative for fermentation conversion processes, but probably not for thermochemical processes.
17

Energy, exergy and cost analyses of nuclear-based hydrogen production via thermochemical water decomposition using a copper-chlorine (Cu-CI) cycle

Orhan, Mehmet Fatih 01 April 2008 (has links)
In this thesis the Copper-Chlorine (Cu-CI) thermochemical cycle and its components as well as operational and environmental conditions are defined, and a comprehensive thermodynamic analysis of a Cu-CI thermochemical cycle, including the relevant chemical reactions, is performed. Also the performance of each component/process is evaluated through energy and exergy efficiencies. Various parametric studies on energetic and exergetic aspects with variable reaction and reference-environment temperatures are carried out. A detailed analysis of the general methodology of cost estimation for the proposed process, including all cost items with their percentages, the factors that affect accuracy, and a scaling method, is also presented. / UOIT
18

A thin film polymer system for the patterning of amines through thermochemical nanolithography

Underwood, William David 24 August 2009 (has links)
A system for the patterning of amines through the thermal decomposition of a thin polymer film was proposed. The polymer was synthesized and films were produced by spin coating. The pyrolysis of both the polymer and the films was studied. The physical properties of the film, such as Tg, were controlled through crosslinking of the polymer and the crosslinking conditions were optimized. Analyses of the reactions that occur on the film as a result of thermal decomposition were studied. These studies seem to indicate that the thin film system studied is viable option toward the patterning of amines. The ability to bind material to the polymer films after deprotection was demonstrated using fluorescent protein and fluorescein isothiocyanate. Micron scale patterns of these fluorescent molecules were created and imaged, successfully demonstrating the viability of the system for patterning. Patterns of polyphenylene vinlyene were produced through the thermal decomposition of a tetrahydrothiophenium chloride salt precursor. Images of the patterns were obtained.
19

Investigation and modeling of coupled thermochemical and thermomechanical erosion in thermally degrading systems

Barr, Benjamin Witten 30 July 2012 (has links)
The coupled effects of thermochemical and thermomechanical erosion are investigated. A quasi-steady ablation model with finite rate surface chemistry is developed and applied to a solid carbon combustion scenario to investigate the system’s behavior in situations in which surface reactions are not in equilibrium. It is found that in this regime, the system can be described effectively in terms of the B number and the Damkohler number, and a useful algebraic relationship between these parameters is determined for nonequilibrium behavior. The thermochemical ablation model is then expanded by considering mechanical removal of thermochemically weakened material from the ablating surface. A model is developed for a randomly oriented carbon fiber preform material, like that used in the production of phenolic impregnated carbon ablator (PICA), and this model is incorporated into the previously developed ablation code. It is found that for PICA in realistic reentry scenarios, the removal of individual fibers from the ablating surface by mechanical erosion is not an important mass loss mechanism, although hypothetical situations exist where this mechanism for mechanical removal of material is non-negligible. The thermo-chemo-mechanical erosion mechanism is then extended to address brand generation in wildland fire scenarios. A model is developed to predict the size and number distribution of embers generated from a tree with fractal geometry. This model is coupled to a simple plume and propagation model similar to those existing in the literature, and a case study is performed for a realistic wildfire scenario. The presence of an optimal branch diameter for brand propagation is identified, and areas for future work in thermo-chemo-mechanical degradation are discussed. / text
20

Simulation of the sulphur iodine thermochemical cycle / Bothwell Nyoni

Nyoni, Bothwell January 2011 (has links)
The demand for energy is increasing throughout the world, and fossil fuel resources are diminishing. At the same time, the use of fossil fuels is slowly being reduced because it pollutes the environment. Research into alternative energy sources becomes necessary and important. An alternative fuel should not only replace fossil fuels but also address the environmental challenges posed by the use of fossil fuels. Hydrogen is an environmentally friendly substance considering that its product of combustion is water. Hydrogen is perceived to be a major contender to replace fossil fuels. Although hydrogen is not an energy source, it is an energy storage medium and a carrier which can be converted into electrical energy by an electrochemical process such as in fuel cell technology. Current hydrogen production methods, such as steam reforming, derive hydrogen from fossil fuels. As such, these methods still have a negative impact on the environment. Hydrogen can also be produced using thermochemical cycles which avoid the use of fossil fuels. The production of hydrogen through thermochemical cycles is expected to compete with the existing hydrogen production technologies. The sulphur iodine (SI) thermochemical cycle has been identified as a high-efficiency approach to produce hydrogen using either nuclear or solar power. A sound foundation is required to enable future construction and operation of thermochemical cycles. The foundation should consist of laboratory to pilot scale evaluation of the process. The activities involved are experimental verification of reactions, process modelling, conceptual design and pilot plant runs. Based on experimental and pilot plant data presented from previous research, this study presents the simulation of the sulphur iodine thermochemical cycle as applied to the South African context. A conceptual design is presented for the sulphur iodine thermochemical cycle with the aid of a process simulator. The low heating value (LHV) energy efficiency is 18% and an energy efficiency of 24% was achieved. The estimated hydrogen production cost was evaluated at $18/kg. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2012.

Page generated in 0.0448 seconds