• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Otimização do processo de disposição de filmes TiN e TiZrN em aço inoxidável utilizando planejamento experimental fatorial. / Optimization of the TiN and TiZrN films arrangement process in stainless steel using factorial experimental design.

BATISTA NETO, Leopoldo Viana. 12 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-12T21:33:19Z No. of bitstreams: 1 LEOPOLDO VIANA BATISTA NETO - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2575700 bytes, checksum: a10f0685285492d2302637ed070d9631 (MD5) / Made available in DSpace on 2018-04-12T21:33:19Z (GMT). No. of bitstreams: 1 LEOPOLDO VIANA BATISTA NETO - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2575700 bytes, checksum: a10f0685285492d2302637ed070d9631 (MD5) Previous issue date: 2014-08-28 / Filmes finos de Nitreto de titânio (TiN) e Nitreto de titânio-zircônio (TiZrN) foram depositados sobre substratos de aço inoxidável 316 usando o método de Sputtering RF para deposição dos filmes. O planejamento de experimentos (DOE) tem sido reconhecido como um método poderoso para otimizar um processo complexo na indústria. Os efeitos do presente estudo foram verificar a viabilidade e confiabilidade da aplicação do método DOE em processos de Sputtering RF, otimizar os parâmetros de processamento para o processo de deposição, identificando os parâmetros sensíveis que afetam a espessura da camada depositada (E.C.D) e a resistência à corrosão (Ecorr.). Para o método de Sputtering RF, dois parâmetros, a taxa e tempo de deposição foram escolhidos para serem os parâmetros do processo. Depois da deposição, a estrutura de camada depositada foi caracterizada por Difração de Raios X (DRX) e por Microscopia Eletrônica de Varredura (MEV). Após o ensaio de polarização, a corrosão foi realizada a fim de investigar a relação entre o início da corrosão e a espessura da camada depositada. A análise de variância (ANOVA) foi realizada para avaliar os parâmetros sensíveis e prever as condições ideais. Com base na análise estatística, os parâmetros mais sensíveis no processo de Sputtering RF foram tanto a taxa como o tempo de deposição do filme fino. As melhores condições de deposição foram a taxa de deposição máxima e tempo máximo. / Titanium nitride (TiN) and titanium-zirconium nitride (TiZrN) thin films were deposited on ASTM F 138 stainless steel substrates using de Sputtering RF methods. Design of experiment (DOE) has long been recognized as a powerful method to optimize a complex process in industry. The purposes of present study were to verify the feasibility and reliability of the application of DOE method on de Sputtering RF processes and optimize the processing parameters for the deposition process, in which the sensitive parameters that affected the film properties were also identified. For de Sputtering RF method, two parameters, deposition rate and time were chosen to be the operating parameters. After deposition, the thin film structure was characterized by X-ray diffraction (XRD), and high-resolution scanning electron microscopy (SEM). After the polarization test, the corrosion analysis was carried out in order to investigate the relationship between the corrosion initiation and the thickness of the deposited layer. The analysis of variance (ANOVA) was conducted to assess the sensitive parameters and predict the optimum conditions. Based on the statistical analysis, the most sensitive parameters in de Sputtering RF process were both the deposition rate and time. The optimum deposition conditions in each system were maximum deposition rate and time.
42

Détecteurs à inductance cinétique pour l'astronomie millimétrique : étude des matériaux et des procédés de fabrication / Development of kinetic inductance detectors for millimeter astronomy and related problems in material science and process technology

Coiffard, Grégoire 14 December 2015 (has links)
Depuis 10 ans, les détecteurs à inductance cinétique (Kinetic Inductance Detector KID) ont connu un essor considérable dans le domaine de la radioastronomie millimétrique pour atteindre des limites de sensibilités de l'ordre du bruit de photon. Le détecteur à inductance cinétique est un résonateur, équivalent à un circuit RLC dont la fréquence de résonance est f_0, lithographié dans un métal supraconducteur. Des photons incidents, possédant une énergie plus grande que le gap supraconducteur, sont absorbés dans le matériau et modifient son impédance de surface résultant en un décalage Df_0 de la fréquence de résonance du résonateur. Plusieurs centaines de résonateurs, de fréquence de résonance distincte, sont organisés en matrice. Nous étudions la réalisation de matrices de détecteurs en aluminium contenant jusqu'à 1932 pixels sur des substrats de diamètre 100 mm sur lesquels les propriétés physiques du matériau supraconducteur sont très homogènes. Différentes approches permettant l'optimisation électrique et optique de ces matrices sont proposées. Ces optimisations ont permis de sélectionner des matrices de détecteurs répondant aux caractéristiques requises par l'IRAM et qui sont à présent installées dans l'instrument NIKA-2 (New Instrument of KID Array) au télescope de 30 m sur le Pico Veleta en Espagne. Nous analysons également la déposition par pulvérisation réactive de films fin de nitrure de titane et nous présentons une méthode rapide et non destructive de caractérisation de la teneur en azote dans ces films par ellipsométrie. Nous décrivons des détails sur l'amélioration du bâti de déposition pour produire des films de TiN plus homogènes en teneur d'azote. Des matrices de détecteurs en nitrure de titane sont fabriquées et caractérisées à partir de ces films. Les performances de cette première matrice sont prometteuses et nous encouragent à poursuivre leur développement. / For 10 years, kinetic inductance detectors are developed for millimeter radioastronomy and they now reach photon-noise sensitivities. A kinetic inductance detector (KID) is a resonator, equivalent to an RLC circuit whose resonant frequency is f_0, structured in a superconducting metal. Incoming photons, with energy greater than the superconducting gap, are absorbed in the metal and change its surface impedance leading to a shift Df_0 of the resonant frequency of the resonator. KID arrays are made with hundred of resonators with different resonant frequencies. We study the fabrication of aluminum-KID arrays of 1932 pixels on 4 inch substrate with homogeneous superconducting properties over this area. Various ways to electrically and optically optimize these arrays are proposed. These optimization allow us to choose arrays that have the required performances. These arrays are now installed in the NIKA-2 (New Instrument of KID Array) instrument in IRAM's 30 m telescope located on the Pico Veleta in Spain. We also analyze reactive sputtered titanium nitride thin films and we present a rapid and non-destructive measurement to characterize the nitrogen content in these films. We describe upgrades of the deposition chamber that allow more uniform thin films to be deposited. TiN KID arrays are fabricated and characterized from these optimized thin films. The performances of these TiN prototype arrays are surprisingly good and encourage future work.
43

Medição de tensões residuais em filmes finos durante o processo de deposição. / Thin films residual stress measurement during deposition process.

Cristiano Fernandes Lagatta 28 July 2011 (has links)
Neste trabalho foram realizadas algumas deposições de filmes de Nitreto de Titânio sobre substrato de aço inoxidável. Foi utilizado o processo conhecido como triodo magnetron sputtering. Os parâmetros de deposição foram mantidos entre as deposições, exceto pela voltagem de bias no substrato, que foi variada de uma deposição para outra. Medições in-situ das tensões residuais no filme depositado foram realizadas. As medições foram feitas através do método da curvatura do substrato, utilizando-se um sensor capacitivo posicionado dentro da câmara de deposição. Embora o dispositivo não tenha sido capaz de quantificar os valores de tensão, foi possível identificar a natureza das mesmas, indicando se elas são de caráter trativo ou compressivo. Comprovou-se a possibilidade do uso de sistemas capacitivos para medições em sputtering. Observou-se que os filmes depositados apresentaram tensões de caráter trativo durante as deposições. / In this work, a series of depositions of titanium nitride thin films was conducted in a triode unbalanced magnetron sputtering chamber. Similar parameters were selected during each deposition, except for the substrate bias voltage, which was different for every deposition. An in-situ measurement of film residual stresses was carried out as the depositions proceeded. This measurement was based on substrate curvature, which was assessed by a home-built capacitive sensor positioned inside the sputtering chamber. Although the measurement device was not able to quantify the stress values, it was possible to identify if they were tensile or compressive. It was proved the possibility of using capacitive measurement devices in sputtering processes. It was possible to observe that the films underwent tensile stresses during the deposition.
44

Nitride-Based Nanocomposite Thin Films Towards Tunable Nanostructures and Functionalities

Xuejing Wang (9099860) 29 July 2020 (has links)
<p> Optical metamaterials have triggered extensive studies driven by their fascinating electromagnetic properties that are not observed in natural materials. Aside from the extraordinary progress, challenges remain in scalable processing and material performance which limit the adoption of metamaterial towards practical applications. The goal of this dissertation is to design and fabricate nanocomposite thin films by combining nitrides with a tunable secondary phase to realize controllable multi-functionalities towards potential device applications. Transition metal nitrides are selected for this study due to the inherit material durability and low-loss plasmonic properties that offer stable two-phase hybridization for potential high temperature optical applications. Using a pulsed laser deposition technique, the nitride-metal nanocomposites are self-assembled into various geometries including pillar-in-matrix, embedded nanoinclusions or complex multilayers, that possess large surface coverage, high epitaxial quality, and sharp phase boundary. The nanostructures can be further engineered upon precise control of growth parameters. </p><p> This dissertation is composed of a general review of related background and experimental approaches, followed by four chapters of detailed research chapters. The first two research chapters involve hybrid metal (Au, Ag) - titanium nitride (TiN) nanocomposite thin films where the metal phase is self-assembled into sub-20 nm nanopillars and further tailored in terms of packing density and tilting angles. The tuning of plasmonic resonance and dielectric constant have been achieved by changing the concentration of Au nanopillars, or the tuning of optical anisotropy and angular selectivity by changing the tilting angle of Ag nanopillars. Towards applications, the protruded Au nanopillars are demonstrated to be highly functional for chemical bonding detection or surface enhanced sensing, whereas the embedded Ag nanopillars exhibit enhanced thermal and mechanical stabilities that are promising for high temperature plasmonic applications. In the last two chapters, dissimilar materials candidates beyond plasmonics have been incorporated to extend the electromagnetic properties, include coupling metal nanoinclusions into a wide bandgap semiconducting aluminum nitride matrix, as well as inserting a dielectric spacer between the hybrid plasmonic claddings for geometrical tuning and electric field enhancement. As a summary, these studies present approaches in addressing material and fabrication challenges in the field of plasmonic metamaterials from fundamental materials perspective. As demonstrated in the following chapters, these hybrid plasmonic nanocomposites provide multiple advantages towards tunable optical or biomedical sensing, high temperature plasmonics, controllable metadevices or nanophotonic chips.</p><div><br></div>
45

CONTROLLING THE PROPERTIES OF HOMOGENEOUS EPSILON NEAR ZERO MATERIALS AND THEIR SWITCHING BEHAVIOR

Mustafa Goksu Ozlu (12476655) 28 April 2022 (has links)
<p>One of the longstanding goals of photonics research has been to obtain strong optical nonlinearities. A promising method to achieve this goal is to operate in the so-called epsilon near zero (ENZ) spectral regime, where the real part of the dielectric permittivity changes sign. If accompanied by low losses, this region enables a platform to achieve extraordinarily high nonlinear response, along with many other interesting optical phenomena. In this work, some of the common all-optical switching structures employing homogeneous ENZ materials are investigated under varying conditions of frequency, incidence angle, and polarization. The optimum switching conditions have been highlighted to pave the way forward to the best experimental configurations in future studies. Moreover, the properties of some of the emerging novel plasmonic materials such as aluminum-doped zinc oxide (AZO) and titanium nitride (TiN) are investigated, specifically for ENZ applications. Their thickness-dependent crystalline structure and carrier densities are employed as a method to control their optical properties. A near-perfect absorption scheme is demonstrated utilizing the Ferrell-Berreman mode occurring at the ENZ region of ultrathin AZO and TiN film. The ENZ frequency and the associated absorption peak of AZO are engineered through thickness-dependence to cover most of the telecom range. This work covers the theoretical background for ENZ nonlinearities and looks into the materials aspect for better control of nonlinearities in experimental realizations.</p>
46

Ätzen von Titannitrid mit Halogenverbindungen: Kammerreinigung mit externer Plasmaquelle

Hellriegel, Ronald 19 May 2009 (has links)
Mit zunehmender Miniaturisierung mikroelektronischer Bauelemente steigen die Anforderungen an reproduzierbare qualitätskonforme Schichten. Um die zur Herstellung notwendigen ALD/PVD/CVD-Schichtabscheideanlagen in einen zuverlässigen Zustand zu versetzen, ist eine regelmäßige Kammerreinigung notwendig. Während des Abscheideprozesses werden nicht nur das Substrat, sondern auch die umliegenden Kammerteile beschichtet. Diese Schichten wachsen mit jedem Beschichtungszyklus weiter an. Der Stress zwischen Schicht und Kammerwand steigt beständig, und es besteht das Risiko das Teile abplatzen und auf die Waferoberfläche fallen und damit die Struktur unbrauchbar machen. Um das zu verhindern, muss die Kammerwand in einen regelmäßigen Zustand versetzt werden, in dem sichergestellt ist, daß keine Schichtreste abplatzen können. In der vorliegenden Arbeit wird ein neues Verfahren zur Trockenreinigung von ALD-Titannitrid Kammern vorgestellt. Dazu wurden TiN-Stücke (hergestellt im ALD, CVD, PVD-Verfahren) auf einem temperaturgeregelten Probenhalter platziert. Eine Argon/NF3 Gasmischung wurde in einer externen Plasmaquelle (RPS) zerlegt und in die Reaktionskammer geschleust. Die Ätzung wurde mit in-situ Reflexionsmessung beobachtet. Experimente mit Chlorzugabe wurden unternommen und ein starker Einfluss auf den Ätzmechanismus beobachtet. Die Ätzraten des TiN sind exponentiell abhängig von der Temperatur und proportional abhängig von der Verfügbarkeit atomaren Fluors. Dieses wird bei der Zerlegung von NF3 frei gesetzt und steht der Reaktion zur Verfügung. Die NF3-Zerlegung in Fluor und Stickstoff wurde mit Hilfe der Massenspektrometrie (QMS) untersucht, Zerlegungsgrade größer 96% wurden erreicht. Mit Hilfe dieser Messung kann der Einfluss der Kammerreinigung auf den Treibhausgasausstoß (GWP) bestimmt werden. Mit dem Ar/NF3-Verfahren können die GWP-Emissionen um 90% im Vergleich zur RIE-Ätzung mit SF6 reduziert werden. Mit Argon/Chlor-Plasmen konnte kein Titannitrid geätzt werden, da die physikalische Sputterkomponente fehlte. Durch Hinzufügen von Chlor zu einer Ar/NF3-Gasmischung konnte die Ätzrate um bis zu 270% im Bereich niedrige Temperaturen/niedriger Druck gesteigert werden. Bei höheren Temperaturen/höherem Druck fielen die Ar/NF3/Chlor Ätzraten allerdings deutlich hinter die des Ar/NF3 zurück. Die dazu führenden Effekte werden untersucht und ausgeführt. Die Nutzung von externen Plasmaquellen bietet eine vielversprechende Alternative um Abscheideanlagen von TiN-Rückständen reinigen zu können. Bei hohen Temperaturen werden deutlich höhere Ätzraten als bei anderen Schichten (SiN, SiO2, W) erreicht. Für Anwendungen im niedrigen Temperaturbereich erlaubt die Zugabe von Chlor interessante Anwendungsmöglichkeiten. / Demands on state of the art deposition technologies for semiconductor production focus on uniformity, repeatability and low defectivity. The chamber condition is a key parameter to achieve these high demands in chemical vapour deposition (CVD) processes and are even more critical to the atomic layer deposition processes (ALD). During the deposition process not only the wafer surface but other chamber parts as well are covered with a thin film. This film accumulates during the deposition cycles and is prone to fall off the walls and pollute the wafer surface. The chamber parts that are exposed to the deposition must be set back to a steady state so that no deposits fall off the walls. The chamber condition also changes uncontrolled with varying film condition on the wall. A new approach for cleaning of ALD-titanium nitride (TiN) deposition chambers was investigated. To determine etch rates TiN-samples (created by ALD, CVD and PVD) were placed on a temperature controlled sample holder. An argon/NF3 mixture was excited in an upstream remote plasma source (RPS) and then routed through the reaction chamber. No further plasma activation inside the reaction chamber was done. The etching was monitored by in-situ reflectometry and etch rates were calculated. The effect of chlorine addition was also studied and strong influence on etch rates was found. The etch rate of TiN is dependent exponentially on temperature and very low etch rates were achieved below 70◦C at a chamber pressure ranging from 20-300 Pa. It was found that this correlates very well with the vapour pressure of the reaction product TiF4. At temperatures of 300◦C etch rates up to 800 nm/min were achieved. The optimum pressure for etching was found at 100 Pa while the pressure effect was small. The etch rate was mainly dependent on the availability of activated fluorine to create TiF4 by the reaction 2 NF3 → N2 + 6 F* 2 TiN + 8 F* → 2 TiF4 + N2 The NF3 decomposition to nitrogen and fluorine was monitored by quadrupole mass spectrometry (QMS) and was found to be greater than 96%. This figure allows an estimation of the amount of Global warm potential (GWP) gas emmited by the process for environmental considerations. Using argon/NF3 or argon/fluorine mixtures in RPS devices reduces the GWP emissions by more than 90% compared to RIE plasma cleaning with SF6. No etching occurred by using argon/chlorine only mixtures as no physical etch component was involved in RPS etch. However adding chlorine to the argon/NF3 mixture accelerated the etching process. Chlorine addition to the argon/NF3 mixture increased the etch rates up to 270% in the low pressure/low temperature regime. At higher temperatures or higher pressures the etch rates dropped below the etch rates achieved solely with fluorine chemistry. It must be emphasized that there is no physical acceleration of the ionized molecules toward the etched sample in this remote plasma setup. The usage of a remote plasma offers an alternative way to remove residues from chambers running TiN deposition processes. At high temperatures the Ar/NF3 offers remarkably high etching rates for TiN compared to other films (silicon nitride, -oxide, tungsten) usually cleaned by remote plasma. For low temperature applications the chlorine enhancement offers an interesting alternative to accelerate the etch process.
47

Investigations On The Properties Of TiN, NbN Thin Films And Multilayers By Reactive Pulsed Laser Deposition

Krishnan, R 07 1900 (has links) (PDF)
Two technologies, namely Laser Technology and Surface Modification Technology, have made rapid strides in the last few decades. The lasers have evolved from a simple laboratory curiosity to a matured industrial tool and its applications are limited only by imagination. Intense, coherent and monochromatic laser sources with power outputs ranging over several orders of magnitude have found innumerable applications in the realm of materials engineering. Reactive Pulsed Laser Deposition (PLD) is a powerful technique that utilises the power of a nanosecond pulsed laser for materials synthesis. Unlike conventional PLD, which require high density targets that are difficult to synthesize at a reasonable cost, the RPLD circumvents the need for one such ceramic target. This thesis presents a detailed and judicious use of this technique for synthesis of hard ceramic multilayer coatings using elemental metal targets. Transition metal nitrides having rock salt structure are known to exhibit superior properties such as hardness and wear resistance and hence formed the basis for the development of first generation coatings. Further improvements through alloying of these binary compounds with metal or metalloid components lead to the development of second generation coatings. As the demand for functional materials increased, surface modification technology alias surface engineering, grew in leaps and bounds. As the large number of coating requirements for optimal performance could not be fulfilled by a single homogeneous material, third generation coatings, comprising multilayer coatings, were developed. It is this aspect of combining the advantages of RPLD process to synthesize ceramic multilayer coatings, provides the main motivation for the present research work. In this thesis, a systematic study presented for synthesis of nanocrystalline and stoichiometric TiN and NbN thin films using RPLD through ablation of high purity titanium and niobium targets, in the presence of low pressure nitrogen gas. A novel Secondary Ion Mass Spectrometry (SIMS) based analysis was developed to effectively deduce the important process parameters in minimum trials to arrive at desired composition. The validity of this SIMS based method, for optimization of process parameters to get stoichiometric nitride films, was proved beyond any speculation by corroborative Proton Elastic Backscattering Spectrometric (PEBS) analysis. SIMS was also used to characterize the [NbN/TiN] multilayers. The feasibility of growing nanocrystalline multilayers with varying thicknesses has been demonstrated. Nanomechanical properties including hardness and adhesion strength of monolithic TiN and NbN films and multilayers were evaluated. The thesis is organised into six chapters. The first chapter gives a brief account on the history and development of ‘surface engineering’. The second chapter provides a comprehensive description of the experimental facility developed in-house to pursue research on PLD grown ceramic thin films and multilayers. Thin film synthesis procedure for ex-situ SIMS and TEM analyses is described. Brief introduction is also presented on the characterization techniques used in this study to investigate the surface, interface and microstructural aspects of PLD grown films with underlying basic principles. The third and fourth chapter describes the synthesis and characterization of titanium nitride and niobium nitride thin films using RPLD technique, respectively. SIMS was used in depth profiling mode, for optimization of three important process parameters, viz., nitrogen gas pressure, substrate temperature and laser pulse energy, to get stoichiometric nitride films. Further, films were characterized using GIXRD, TEM, XPS and PEBS for their structure and composition. AFM measurements were made to elucidate the surface morphological features. PEBS was effectively used to estimate the nitrogen concentration in a quantitative manner and the results corroborate well with the SIMS measurements. Having succeeded in synthesizing stoichiometric TiN and NbN films, further studies on the nanomechanical properties of monolithic TiN and NbN films and their multilayers were carried out and these results form the contents of the fifth chapter. The findings of the work reported in this thesis are concluded in Chapter 6 and few possible suggestions were presented as future directions. Both the monolithic TiN and NbN coatings showed a deposition pressure dependent hardness variation. The hardness of these monolithic films was found to be around 30 GPa, higher than the hardness values obtained by other conventional techniques. Keeping total thickness of the multilayers constant at 1 μm, [NbN/TiN] multilayers having bilayer periods ranging from 50 nm to 1000 nm, were synthesized. A systematic enhancement in hardness upto ~ 40 GPa was observed for [NbN/TiN]10 with the modulus of the multilayer remaining almost constant. The pileup observed around the indentation edge is indicative of toughening in multilayers. The tribological properties of multilayer films showed a better performance in terms of low coefficient of friction and regeneration of coating surfaces as revealed from the nanotribological studies. Overall, the multilayer coatings exhibited better performance in terms of hardness, toughness and adhesion with the substrate material.
48

Titanium Nitride-Based Electrode Materials For Oxidation Of Small Molecules : Applications In Electrochemical Energy Systems

Musthafa, O T Muhammed 08 1900 (has links) (PDF)
Synopsis of the thesis entitled “Titanium Nitride-Based Electrode Materials for Oxidation of Small Molecules: Applications in Electrochemical Energy Systems” submitted by Muhammed Musthafa O. T under the supervision of Prof. S. Sampath at the Department of Inorganic and Physical Chemistry of the Indian Institute of Science for the Ph.D degree in the faculty of science. Fuel cells have been the focus of interest for many decades because of the ever increasing demands in energy. Towards this direction, there have been considerable efforts to find efficient electrocatalysts to oxidize small organic molecules (SOMs) such as methanol, ethanol, glycerol, hydrazine and borohydride that are of potential interest in direct fuel cells. Most studies revolve around platinum which is the best electrocatalyst known for the oxidation of many SOMs. However, platinum is extremely susceptible to carbon monoxide (CO) poisoning which is an intermediate in the electrooxidation of aliphatic alcohols. The best known catalyst, platinum-ruthenium alloy (PtRu), suffers from leaching of Ru during cycling resulting in decrease in efficiency in addition to loss of precious metal. Another important aspect of fuel cell catalyst degradation is corrosion of widely-used carbon support, under fuel cell conditions. Corrosion of carbon support weakens the adherence of catalyst particles on the support and in turn results in loss of catalyst and also in its easy oxidation. Carbon corrosion is also reported to decrease the electronic continuity of the catalyst layer. Hence, replacement of carbon support with durable material is required. The present research explores the use of non-carbonaceous, transition metal nitride for anchoring catalytic particles. The favorable physicochemical properties of titanium nitride (TiN) such as extreme hardness, excellent corrosion resistance in aggressive electrolytes, resistance to nearly all chemicals, salt and humidity, very good support for the adherence of fuel cell catalysts and excellent electronic conductivity motivated us to use this material for anchoring fuel cell catalysts such as Pt, PtRu and Pd. In the present studies, TiN coated on stainless steel (SS 304) surface is used as an electrode material. Catalysts such as Pt, Pd and PtRu are anchored on to TiN and used for the oxidation of methanol and ethanol in acidic as well as in alkaline media. Use of bare TiN is explored for the oxidation of sodium borohydride. The efficiency of TiN supported catalysts are compared with carbon supported ones. Preliminary studies on the use of TiN supported catalysts in fuel cells have been conducted as well. Figure 1 shows the topographic atomic force microscopic (AFM) image in combination with scanning Kelvin probe (SKP) image of platinized TiN (Pt-TiN) surface. Since Pt particles are metallic, they are expected to show lower work function values than that of TiN domains which is indeed observed in figure 1B where the location of Pt particles is shown as dip in the work function. Very interestingly, the interface of Pt-TiN possesses very different work function values confirming the existence of metal-support interaction and this is expected to have positive implications in fuel cell catalysis. Figure 1. Contact mode AFM (A) and the corresponding scanning Kelvin probe image (B) of Pt-TiN surface. Figure 2. Cyclic voltammograms of Pt-TiN and Pt-C electrodes in 0.5 M H2SO4 containing 0.5 M methanol at a scan rate of 10 mV/s. Loading of the catalyst used is 1 mg of Pt/cm2. The performance of Pt-TiN and PtRu-TiN are compared with the corresponding carbon supported catalysts (Pt-C, PtRu-C) for the electrooxidation of methanol. Figure 2 shows the voltammograms obtained on Pt-TiN and Pt-C in presence of acidified methanol. TiN supported catalyst performs better than carbon supported catalyst in terms of high currents at low over voltages (based on I-t measurements), long term stability and high exchange current densities (based on Tafel studies). The electrochemical characteristics of methanol oxidation on Pt-TiN and Pt-C catalysts are given in table 1. The current densities observed on TiN supported catalyst are almost three times higher than that of carbon supported catalyst confirming the promoting effect of TiN support towards methanol oxidation reaction. The performance of Pt-TiN electrocatalyst under fuel cell conditions reveals peak power densities close to 396 mW/cm2 at a current density of 375 mA/cm2, at 90C. Table 1. Characteristics of methanol oxidation on TiN and carbon supported catalysts in acidic medium. Material Onset Ep (mV) Ip EAA Ip Ip/Ib E=Ep-Eb potential (mA/mg (cm2/mg)b (mA/cm2 (mV) of Pt)a of Pt)c (mV) Pt-TiN 170 720 56 78.4 0.714 1.24 82 Pt-C 250 700 18 68.6 0.262 0.98 106 a Mass activity; Ip is the forward peak current and Ib is the reverse peak current; Ep and Eb are forward and reverse peak potentials. b Electrochemically active area (EAA) c Current density normalized for EAA Figure 3. In-situ FTIR spectra on bare TiN surface as a function of applied DC bias vs.SCE. The spectra are shown in regions of 1000 to 2000 cm-1 (A) and 2500 to 4000 cm-1 (B). Electrolyte used is 0.5 M methanol in 0.5 M H2SO4. Reference spectrum is obtained at 0 V. In-situ FTIR spectroelectrochemical measurements have been carried out to understand the intermediates and products formed during methanol oxidation. TiN surface is highly reflective and is quite amenable for reflectance IR studies. Figure 3 shows the potential dependant spectral characteristics of TiN in methanolic sulphuric acid. The bands observed at 1600 and 3600 cm-1 correspond to –OH bending and stretching vibrations of adsorbed water molecules. Interestingly, bands corresponding to adsorbed water are observed even at remarkably low over potentials of around 0.1 V vs. SCE where CO poisoning of Pt can be very severe. This experiment confirms the ability of inexpensive TiN to function like expensive Ru in fuel cell catalysis. Similar studies have been carried out for ethanol electrooxidation on TiN supported catalysts such as Pd, Pt and PtRu in acidic as well as alkaline conditions. Adherence of fuel cell catalyst on to TiN and carbon support is followed by cycling the electrode potential continuously as shown in figure 4. The adherence of Pd on TiN surface is very good and the stability tests reveal that Pd adheres and remains on TiN for a long time as compared to carbon support. Figure 4. Cyclic voltammograms of Pd-C (A) and Pd-TiN (B) in 1 M KOH at 100 mV/s. Pd loading used is 83 µg/cm2. In the chapter on borohydride oxidation, bare TiN electrode is used for the electrochemical oxidation of sodium borohydride. In direct borohydride fuel cells (DBFC), H2 evolution that occurs at low over voltages decreases the apparent number of electrons transferred and consequently the fuel cell efficiency. TiN has been shown to be a relatively H2 evolution-free electrocatalyst for borohydride oxidation (figure 5A). As shown in figure 5A, no H2 oxidation is observed (below -0.5 V) on TiN surface with increase in concentration of borohydride. This point to the fact that direct oxidation of borohydride is very favourable on TiN electrode and is confirmed by fuel cell measurements as shown in figure 5B. Non-platinum DBFCs using TiN as the anode (borohydride oxidation) and prussian blue supported carbon (PB-C) as the cathode (oxygen or hydrogen peroxide) electrocatalysts (figure 5B) reveal peak power density of 107 mW/cm2 for a current density 130 mA/cm2, at 80C. Figure 5. Cyclic voltammograms of TiN in 1 M NaOH containing varying concentrations of borohydride at a scan rate of 20 mV/s (A). Polarization studies of DBFC with TiN anode catalyst and PB-C (prussian blue supported on carbon) cathode catalyst (B). Anolyte is 0.79 M borohydride in 5 M NaOH and catholyte is 2.2 M acidified H2O2. The second aspect of the thesis is related to the use of TiN to prepare visible light active, nitrogen doped TiO2 (N-TiO2). This is carried out by electrochemical anodization of TiN in 0.5 M HNO3 at 1.4 V. The X-ray photoelectron spectroscopy (XPS) suggests the formation of oxide phase on anodized TiN surface (figure 6A) and is confirmed by reflectance UV-Visible spectroscopy. The visible light activity is used for the sunlight induced reduction of graphene oxide to reduced graphene oxide. As shown in the Raman spectra (figure 6B), a negative shift of the D and G band positions by about 20 cm-1 and the intensity ratio reversal after reduction confirms the formation of reduced graphene oxide on N-TiO2. Figure 6. (A) Ti (2p) region of XPS of fresh TiN and anodized TiN. Anodization has been carried out at 1.4 V vs. SCE in 0.5 M HNO3. (B) Raman spectra of exfoliated graphene oxide on anodized TiN before and after sunlight induced reduction. In summary, TiN has been shown to be an active support material for fuel cell catalysts in the present studies. The appendix details the basic electrochemical studies on TiN using various redox couples, electroploymerization of aniline and the formation of nanostructures on TiN surface. (For figures pl refer the abstract pdf file)
49

Microstructure and Inclusion Characteristics in Steels with Ti-oxide and TiN Additions

Mu, Wangzhong January 2015 (has links)
Non-metallic inclusions in steels are generally considered to be detrimental for mechanical properties. However, it has been recognized that certain inclusions, such as Ti-oxide and TiN, can serve as potent nucleation sites for the formation of intragranular ferrite (IGF) in low-alloy steels. The formation of IGF could improve the toughness of the coarse grained heat affected zone (CGHAZ) of weld metals. Thus, the present thesis mainly focuses on the effect of size of nucleation sites on the IGF formation. Quantitative studies on the composition, size distribution and nucleation probability for each size of the inclusions as well as the area fraction, starting temperature and morphology of an IGF have been carried out. In the present work, the Ti-oxide and TiN powders were mixed with metallic powders. The mixed powders were heated up to the liquid state and cooled with a slow cooling rate of 3.6 ºC/min. These as-cast steels with Ti-oxide and TiN additions were used to simulate the IGF formation in the CGHAZ of weld metals. Specifically, the inclusion and microstructure characteristics in as-cast steels have been investigated. The results show that the nucleant inclusion was identified as a TiOx+MnS phase in steels with Ti2O3 additions and as a TiN+Mn-Al-Si-Ti-O+MnS phase in steels with TiN additions. In addition, the TiOx and TiN phases are detected to be the effective nucleation sites for IGF formation. It is clearly shown that an increased inclusion size leads to an increased probability of IGF nucleation. This probability of IGF nucleation for each inclusion size of the TiOx+MnS inclusions is clearly higher than that of the complex TiN+Mn-Al-Si-Ti-O+MnS inclusions. In addition, the area fraction of IGF in the steels with Ti2O3 additions is larger than that of the steels with TiN additions. This result agrees with the predicted tendency of the probability of IGF nucleation for each inclusion size in the steels with Ti2O3 and TiN additions. In order to predict the effective inclusion size for IGF formation, the critical diameters of the TiO, TiN and VN inclusions, which acted as the nucleation sites of IGF formation, were also calculated based on the classical nucleation theory. The critical diameters of TiO, TiN and VN inclusions for IGF formation were found to be 0.192, 0.355 and 0.810 μm in the present steels. The calculation results were found to be in agreement with the experiment data of an effective inclusion size. Moreover, the effects of the S, Mn and C contents on the critical diameters of inclusions were also calculated. It was found that the critical diameter of the TiO, TiN and VN inclusions increases with an increased content of Mn or C. However, the S content doesn’t have a direct effect on the critical diameter of the inclusions for IGF formation. The probability of IGF nucleation for each inclusion size slightly decreases in the steel containing a higher S content. This fact is due to that an increased amount of MnS precipitation covers the nucleant inclusion surface. In the as-cast experiment, it was noted that an IGF can be formed in steels with Ti2O3 and TiN additions with a cooling rate of 3.6 ºC/min. In order to control the microstructure characteristics, such as the area fraction and the morphology of an IGF, and to investigate the starting temperature of IGF and grain boundary ferrite (GBF) formation, the dynamic transformation behavior of IGF and GBF was studied in-situ by a high temperature confocal laser scanning microscope (CLSM). Furthermore, the chemical compositions of the inclusions and the morphology of IGF after the in-situ observations were investigated by using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) which equipped wavelength dispersive spectrometer (WDS). The results show that the area fraction of IGF is larger in the steels with Ti2O3 additions compared to the steels with TiN additions, after the same thermal cycle has been imposed. This is due to that the TiOx phase provides more potent nucleation sites for IGF than the TiN phase does. Also, the area fraction of IGF in the steels is highest after at an intermediate cooling rate of 70 ºC/min, since the competing phase transformations are avoided. This fact has been detected by using a hybrid methodology in combination with CLSM and differential scanning calorimetry (DSC). In addition, it is noted that the morphology of an IGF is refined with an increased cooling rate. / <p>QC 20150325</p>
50

Propriedades óticas de filmes de nitreto de titânio com adição de nióbio depositados por triodo-magnetron sputtering / Optical properties of TiN with niobium deposited by triode-magnetron sputtering

Alves, Luiz Antonio 14 July 2014 (has links)
Made available in DSpace on 2016-12-08T15:56:18Z (GMT). No. of bitstreams: 1 Luiz Antonio Alves.pdf: 4887074 bytes, checksum: 2921556dad24ae9311fe651e5a0ccdcf (MD5) Previous issue date: 2014-07-14 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Titanium nitride (TiN) films with niobium (Nb) addition (TiN[Nb], 0,01 < Nb/Ti < 0,15) were obtained by sputter deposition in a triode magnetron sputtering system from a mosaic target of titanium with niobium inserts at the erosion zone. The effects of Nb/Ti in surface morphology were analyzed by atomic force and confocal microscopy measurements. The reflectivities of the films with niobium incorporation are in agreement with the Drude-Lorentz model. The constants obtained by the fitting show an increase in plasma frequency and relaxation time with increased Nb/Ti ratio, indicating an increase in the number of charge carriers. The color parameters according CIELab system show an increase in L*, a* and b* coordinates. The visual analysis indicates an increased red tone when compared with pure TiN film in agreement with the increased absolute values of a* coordinates. / Filmes de nitreto de titânio com adição de nióbio ((TiN[Nb], 0,01 < Nb/Ti < 0,15) foram depositados pelo processo de pulverização catódica utilizando um sistema Triodo Magnetron Sputtering. A pulverização catódica de Titânio e Nióbio foi feita a partir de um alvo de titânio com insertos de nióbio dispostos na região de erosão. Foram analisados os efeitos da razão Nb/Ti na morfologia superficial do filme através de microscopia de força atômica e confocal. As medidas de refletividade dos filmes de TiN[Nb] obedecem perfeitamente o modelo de Drude-Lorentz. As constantes obtidas pelo modelo de Drude-Lorentz mostram um aumento nos valores da frequência de plasma e tempo de relaxação com o aumento na razão Nb/Ti, indicando que a presença de nióbio aumenta o número de portadores de carga. Os parâmetros de cor segundo o sistema CIELab mostram um aumento nas coordenadas L*, a* e b*. A análise visual das amostras mostra uma tonalidade avermelhada, quando comparadas com o filme contendo somente TiN, em concordância com o aumento absoluto nas coordenadas a*.

Page generated in 0.0974 seconds