• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Síntese e caracterização de revestimentos protetores de ZrN/TiN sobre o biomaterial Nitinol obtidos por tratamento duplex.

Bernardi, Juliane Carla 08 July 2011 (has links)
O presente trabalho apresenta um estudo do tratamento duplex para o biomaterial Nitinol (NiTi). Este tratamento consiste em nitretação a plasma para a formação do nitreto de titânio (TiN), seguido de deposição de um filme fino de nitreto de zircônio (ZrN) sobre a superfície nitretada. O estudo das fases cristalinas presentes no sistema foi realizado pela técnica de difração de raios X (DRX). A morfologia e espessura da camada nitretada e do filme fino depositado foram avaliadas por microscopia eletrônica de varredura (MEV). As propriedades mecânicas foram estudadas mediante ensaios de nanoindentação. Para avaliar a resistência à corrosão foram realizados testes de polarização potenciodinâmica em solução de saliva artificial. Os resultados mostram que a temperatura de nitretação tem forte influência na formação do TiN na superfície do substrato. O filme de ZrN depositado sobre as amostras nitretadas apresenta propriedades de dureza e resistência à corrosão que dependem da temperatura de nitretação, mesmo tendo sido depositados sem variação de temperatura. Esse comportamento sugere que os filmes são influenciados pela condição inicial da superfície antes da deposição. Os melhores resultados em termos de dureza e resistência à corrosão foram obtidos nas amostras tratadas em temperaturas mais elevadas. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-06-05T18:07:33Z No. of bitstreams: 1 Dissertacao Juliane Carla Bernardi.pdf: 2940702 bytes, checksum: 376b73745f740260fc19e7a6e8b5d900 (MD5) / Made available in DSpace on 2014-06-05T18:07:33Z (GMT). No. of bitstreams: 1 Dissertacao Juliane Carla Bernardi.pdf: 2940702 bytes, checksum: 376b73745f740260fc19e7a6e8b5d900 (MD5) / The present work aims to study about duplex treatment on the biomaterial Nitinol (NiTi). This treatment consists in titanium nitride (TiN) formed by plasma nitration, followed by zirconium nitride (ZrN) thin film deposition upon the nitrated surface. The study of crystalline phases present in the system was performed by X-ray diffraction technique (XRD). The morphology and thickness of the nitrated layer and thin film were evaluated by scanning electron microscopy (SEM). The mechanical properties were studied by nanoindentation analysis. In order to evaluate corrosive resistance tests of potenciodynamic polarization were performed in solution of saliva artificial. Results demonstrate that nitration temperature has a strong influence in the formation TiN on the substrate surface. The ZrN film depositated upon nitrated samples present hardness and corrosive resistance properties that depend on nitration temperature, even though ZrN films were depositated without temperature variation. This behaviour suggests that films are influenced by the initial surface condition before depositon. The best results in terms of hardness and corrosive resistance were obtained in samples treated at higher temperatures.
52

First-Principles Studies of Point Defects and Phase Transformations in Materials

Bhat, Soumya S January 2014 (has links) (PDF)
The functional and mechanical properties of a material are often determined by the defects in them. A thorough understanding of the relationship between the defects and the properties allows for tailoring a material’s properties into the desired combinations. Amongst the different classes of defects, experimental identification of point defects is typically difficult and indirect, usually requiring an ingenious combination of different techniques. In this context, first-principles calculations, complemented with experiments, offer insights into the formation of defects and their role in properties. This was demonstrated in this thesis through investigations on the effect of calcium vacancies on structure, vibrational and elastic properties hydroxyapatite (HAp), and oxygen vacancies on elastic properties of zinc oxide (ZnO) using first-principles calculations based on density functional theory (DFT). Our results confirm a considerable reduction in the elastic constants of HAp—the inorganic constituent of bone—due to Ca-deficiency, which was experimentally reported earlier. Elastic anisotropic behavior of stoichiometric and Ca-deficient HAp is analyzed, which will be useful in understanding the effects of crystal orientation in designing synthetic bone. Local structural stability of HAp and Ca-deficient HAp structures is assessed with full phonon dispersion studies and the specific signatures in the computed vibrational spectra for Ca deficiency in HAp can be utilized in experimental characterization of different types of defected HAp. In ZnO, formation energies of oxygen vacancies in different types of oxygen deficient structures are analyzed to ascertain their stability. Our results show considerable degradation of some of the elastic moduli due to the presence of such vacancies. Further, the charge state of the defect structure is found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. The second part of the thesis deals with developing some understanding of the pressure-induced phase transformations (PIPT) in an inorganic material, titanium nitride (TiN), and in a metal-organic framework (MOF), erbium formate crystal. PIPT, which is a common phenomenon in many materials, is of great interest in materials science as the properties of the transformation product can diverge significantly from those of the parent phase. Hence, it is important to understand the pressure induced changes so to improve the component reliability and to enhance service life of materials used in high pressure applications. TiN undergoes PIPT from NaCl to CsCl structure. On the basis of our DFT calculations, we propose a new transformation path, which shows that the stress required for this transformation is substantially lower when it is deviatoric in nature than that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. Further, we provide a quantitative comparison of electronic structure of TiN in NaCl structure with that of high pressure phase with implication to electrical conduction properties. Next, we investigate the PIPT associated with bond rearrangement in erbium formate framework. Phase transition pressure is estimated and the corresponding changes in bonding characteristics are analyzed. Estimated lattice constants for both the phases agree well with the earlier experimental results. While the transformation pressure of the framework is overestimated with respect to experiment, our calculations confirm PIPT, and thus provide a theoretical evidence for the experimental finding.
53

Comportement thermique du xénon dans le nitrure de titane fritté matrice inerte d’intérêt des RNR-G / Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

Bes, René 03 November 2010 (has links)
Ce travail se place dans le cadre des réacteurs nucléaires de 4ème génération tels que les réacteurs à neutrons rapides et caloporteur gaz (RNR-G), pour lesquels des matériaux réfractaires comme le nitrure de titane (TiN) enroberont le combustible afin de permettre la rétention des produits de fission. Cette étude a porté sur le comportement thermique intragranulaire du xénon dans des échantillons de TiN obtenus par frittage à chaud sous charge. Le rôle de la microstructure sur le comportement thermique du xénon a été étudié. Plusieurs lots ont ainsi été synthétisés sous différentes conditions de température et de composition de la poudre initiale. Le xénon a été introduit par implantation ionique. Les échantillons ont ensuite subi des traitements thermiques entre 1300°C et 1600°C, soient les températures accidentelles envisagées. Un transport majoritaire du xénon vers la surface a été mis en évidence. Ce dernier est ralenti lorsque la température de frittage augmente. Des différences de comportement ont été observées selon les poudres mises en oeuvre dans la synthèse et selon l'orientation cristalline du grain considéré. Le relâchement du xénon a également été corrélé à l’oxydation de TiN. Des bulles de Xe dès 0,38 % atomique ont été observées. Leur taille est proportionnelle à la concentration en Xe et augmente avec la température de recuit, d’où une certaine mobilité du Xe au sein de TiN. Plusieurs mécanismes pouvant expliquer cette mobilité sont proposés. En complément, des calculs ab initio ont confirmé le caractère fortement insoluble du Xe dans TiN et révélé que les bilacunes sont les plus favorables à l'incorporation du xénon au sein de ce matériau. / This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using differents sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300°C to 1600°C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bivacancies were found to be the most favoured Xe incorporation sites in this material.
54

Preparation of Copper-based catalysts for the synthesis of Silicon nanowires / Préparation de catalyseurs à base de cuivre pour la synthèse de nanofils de silicium

Roussey, Arthur 25 September 2012 (has links)
Les travaux dans cette thèse ont pour objectif la synthèse de catalyseurs (nanoparticules de cuivre) de taille contrôlée pour la synthèse de nanofils de silicium dans des conditions compatibles CMOS, c'est-à-dire en évitant l'utilisation de l'or comme catalyseur et pour des croissances basse température (<450°C). Les résultats obtenus ont permis de montrer que les techniques de chimie de surface classiquement utilisées pour la préparation de catalyseurs sur des supports 3D (silice, nitrure de titane…) sont directement applicables et transférables sur des supports 2D (wafer de silicium recouvert de films fins de SiO2, SiOx et TiN). Nous avons par exemple pu préparer des nanoparticules de cuivre de taille contrôlée (de 3 nm à 40 nm de diamètre moyen suivant les conditions expérimentales et supports). De plus, les mécanismes de formation des nanoparticules en fonction des propriétés de surface des matériaux étudiés ont été démontrés en combinant diverses techniques d'analyses de surface. La croissance de nanofils de silicium à partir de ces catalyseurs sur substrats 2D a également été réalisée avec succès dans des procédés à basse température. Il a notamment été montré l'existence d'un diamètre minimum critique à partir de laquelle la croissance basse température était possible / The work presented in this PhD thesis aimed at the preparation of copper nanoparticles of controllable size and their utilization as catalysts for the growth of silicon nanowires in a process compatible with standard CMOS technology and at low temperature (< 450°C). The growth of silicon nanowires by Chemical Vapor Deposition (CVD) via the catalytic decomposition of a silicon precursor on metallic nanoparticles at low temperature (Vapor Solid-Solid process) was demonstrated to be possible from an oxidized Cu thin film. However, this process does not allow the control over nanowires diameter, which is controlled by the diameter of the nanoparticle of catalyst. In this PhD is presented a fully bottom-up approach to prepare copper nanoparticles of controllable size directly on a surface without the help of external stabilizer by mean of surface organometallic chemistry. First, the preparation of copper nanoparticles is demonstrated on 3D substrates (silica and titanium nitride nanoparticles), along with the fine comprehension of the formation mechanism of the nanoparticles as a function of the surface properties. Then, this methodology is transferred to planar (2D) substrates typically used in microelectronics (silicon wafers). Surface structure is demonstrated to direct the Cu nanoparticles diameter between 3 to 40 nm. The similarities between the 2D and 3D substrates are discussed. Finally, the activity of the Copper nanoparticles in the growth of Silicon nanowire is presented and it is demonstrated that in our conditions a critical diameter may exist above which the growth occurs
55

Síntese e caracterização de revestimentos protetores de ZrN/TiN sobre o biomaterial Nitinol obtidos por tratamento duplex.

Bernardi, Juliane Carla 08 July 2011 (has links)
O presente trabalho apresenta um estudo do tratamento duplex para o biomaterial Nitinol (NiTi). Este tratamento consiste em nitretação a plasma para a formação do nitreto de titânio (TiN), seguido de deposição de um filme fino de nitreto de zircônio (ZrN) sobre a superfície nitretada. O estudo das fases cristalinas presentes no sistema foi realizado pela técnica de difração de raios X (DRX). A morfologia e espessura da camada nitretada e do filme fino depositado foram avaliadas por microscopia eletrônica de varredura (MEV). As propriedades mecânicas foram estudadas mediante ensaios de nanoindentação. Para avaliar a resistência à corrosão foram realizados testes de polarização potenciodinâmica em solução de saliva artificial. Os resultados mostram que a temperatura de nitretação tem forte influência na formação do TiN na superfície do substrato. O filme de ZrN depositado sobre as amostras nitretadas apresenta propriedades de dureza e resistência à corrosão que dependem da temperatura de nitretação, mesmo tendo sido depositados sem variação de temperatura. Esse comportamento sugere que os filmes são influenciados pela condição inicial da superfície antes da deposição. Os melhores resultados em termos de dureza e resistência à corrosão foram obtidos nas amostras tratadas em temperaturas mais elevadas. / The present work aims to study about duplex treatment on the biomaterial Nitinol (NiTi). This treatment consists in titanium nitride (TiN) formed by plasma nitration, followed by zirconium nitride (ZrN) thin film deposition upon the nitrated surface. The study of crystalline phases present in the system was performed by X-ray diffraction technique (XRD). The morphology and thickness of the nitrated layer and thin film were evaluated by scanning electron microscopy (SEM). The mechanical properties were studied by nanoindentation analysis. In order to evaluate corrosive resistance tests of potenciodynamic polarization were performed in solution of saliva artificial. Results demonstrate that nitration temperature has a strong influence in the formation TiN on the substrate surface. The ZrN film depositated upon nitrated samples present hardness and corrosive resistance properties that depend on nitration temperature, even though ZrN films were depositated without temperature variation. This behaviour suggests that films are influenced by the initial surface condition before depositon. The best results in terms of hardness and corrosive resistance were obtained in samples treated at higher temperatures.
56

Měřicí doteky ve strojírenské metrologii / Measuring probe tips in engineering metrology

Böhm, Jakub January 2018 (has links)
This diploma thesis deals with measuring touches problems in industrial metrology. Thesis describes adhesive wear and tear which is caused by measuring probes when dynamical measuring is being concluded. Measuring of damaged component made of silumin and its different changes of texture by different measuring probes are evaluated. Measuring touches are made of titanium nitride, silicon nitride, zirconium, bearing chrome steel, ruby, experimental composite material and nanocrystalline diamond.
57

Осаждение и травление наноматериалов с использованием высоковакуумного плазмохимического модуля : магистерская диссертация / Deposition and etching of nanomaterials using a high-vacuum plasmachemical module

Камалов, Р. В., Kamalov, R. V. January 2017 (has links)
Объект изучения – модуль плазмохимического травления и осаждения на базе нанотехнологического комплекса Нанофаб-100. Цель работы — плазмохимический синтез тонких покрытий на основе нитридов алюминия и титана. Методы исследования: плазмостимулированное химическое осаждение из газовой фазы, электрохимическое окисление, плазменное азотирование, сканирующая электронная и атомно-силовая микроскопия, оптическая спектроскопия, наноиндентирование. В результате исследования разработана методика синтеза нитрида алюминия на установке плазмохимического синтеза. Синтезированы тонкие пленки нитрида алюминия толщиной 50-200 нм. Продемонстрирована возможность получения наноточек нитрида алюминия. С помощью плазмохимического азотирования модифицирована поверхность металлического титана с увеличением твердости в 4 раза. Показана возможность получения нанотубулярных структур нитрида титана, являющихся перспективными в целях создания электронных устройств, фотокаталитических ячеек и др. Результаты работы отражены в тезисах докладов III Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2016». / The object of this study is the module of plasma chemical etching and deposition based on nanotechnology complex Nanofab-100. The goal of the current paper is the plasma-chemical synthesis of thin coatings based on aluminum and titanium nitrides. As a result of the research, a technological map for the routine of the plasma-chemical synthesis and a technique for obtaining nanomaterials on the example of aluminum nitride have been developed. There were synthesized thin films of aluminum nitride with 50-200 nm thickness. The possibility of synthesis nano-dots of AlN is demonstrated. The surface of metallic titanium has been modified with an increase in hardness by 4 times using plasma-assisted nitriding process. The possibility of obtaining nanotubular structures of titanium nitride, which are promising for microelectronic and photocatalysis, is shown. The results of the work are reported in abstracts of the III International Youth Scientific Conference «Physics. Technologies. Innovation. FTI-2016».
58

Potentialité de préparation de revêtements céramiques par projection plasma sous basse pression / New preparation of ceramic coatings by low-pressure plasma spray

Song, Chen 25 June 2018 (has links)
En tant que technologie de projection thermique avancée, la projection plasma sous basse pression (LPPS) permet d'obtenir des revêtements de haute qualité et peut combler l'écart d'épaisseur entre les technologies de projection thermique conventionnelles et les procédés de couche mince standard. En outre, LPPS permet de construire des revêtements uniformes avec diverses microstructures; le dépôt a lieu non seulement à partir des éclaboussures liquides, mais aussi à partir des amas nanométriques ainsi que de la phase vapeur en fonction des conditions opérationnelles. Afin de continuer à améliorer et à développer le procédé LPPS, cette recherche vise à le combiner avec les procédés émergents de projection plasma en suspension et de projection plasma réactif. Il devait à la fois fournir deux nouveaux processus intégrés et réaliser des revêtements à structure fine avec des microstructures uniques et des performances élevées.Une torche à plasma bi-cathode (laboratoire LERMPS, UTBM, France) à mode d'injection axiale a été conçue et construite pour le LPPS, dont la puissance maximale en entrée du plasma a pu atteindre 80 kW. En utilisant cette nouvelle torche, soit la suspension à très fines particules, soit les poudres micrométriques ont pu être injectées dans le centre du plasma à basse pression. En conséquence, le transfert de chaleur et de masse entre le jet de plasma et les matériaux pulvérisés a été amélioré.La torche à plasma bi-cathode axiale a été appliquée d'abord pour pulvériser deux types de charges de YSZ, y compris la suspension de YSZ et les poudres agglomérées de YSZ. Les résultats ont indiqué que tous les revêtements YSZ présentaient des structures relativement denses en raison de la grande vitesse des particules sous faibles pressions. Les revêtements ont été composés des particules fondues, des particules agglomérées ainsi que du dépôt en phase vapeur. Il a été constaté que le degré de vaporisation de YSZ a été augmenté en utilisant une taille de particule plus fine, une pression ambiante plus basse, une distance de pulvérisation plus longue et une puissance de plasma plus élevée. En outre, tous les revêtements YSZ ont subi une transformation de phase significative d'une phase monoclinique à une phase tétragonale, et le degré de transformation était proportionnel au degré de vaporisation. Cependant, les propriétés mécaniques des revêtements résultants ont des comportements opposés. Les revêtements YSZ préparés à partir des particules agglomérées, qui avaient une plus grande taille de gouttelettes et moins de dépôt en phase vapeur, présentaient une dureté et un module de Young plus élevés que les revêtements YSZ fabriqués à partir d'une suspension fine.Une autre torche à plasma à haute énergie O3CP (Oerlikon Metco, Suisse) a été utilisée pour synthétiser in situ les revêtements de TiN sur des alliages de Ti-6Al-4V par projection de plasma réactive à très basse pression. Les poudres de Ti pur ont été pulvérisées dans une atmosphère de N2 sous une puissance de plasma d'entrée de 120 kW. Les revêtements TiN hybrides structurés ont été synthétisés, ce qui n'était pas le cas auparavant avec d'autres procédés de projection thermique. Il est connu que la réaction de nitruration se produisait non seulement dans le jet de plasma mais aussi sur le substrat. De plus, avec l'augmentation de la distance de pulvérisation, l'effet de nitruration a été affaibli et la structure hybride du revêtement de TiN a changé de laminaire dense en colonne poreuse, en function du degré de vaporisation supérieur, de la concentration de réactive inférieure et du substrat plus froid.. Néanmoins, ils ont également permis d'améliorer les propriétés mécaniques du substrat Ti-6Al-4V. / As an advanced thermal spray technology, low-pressure plasma spray (LPPS) allows obtaining high-quality coatings and can bridge the thickness gap between conventional thermal spray technologies and standard thin film processes. Moreover, LPPS permits to build uniform coatings with various microstructures; deposition takes place not only from liquid splats but also from nano-sized clusters as well as from the vapor phase depending on operational conditions. In order to further improve and develop the LPPS process, this research aims to combine it with the emerging suspension plasma spray and reactive plasma spray processes. It was expected to both provide two novel integrated processes and achieve fine-structured coatings with unique microstructures and high performance.A bi-cathode plasma torch (LERMPS lab, UTBM, France) with an axial injection mode was designed and built for LPPS, whose maximum input plasma power was able to reach to 80 kW. By using this new torch, either the very fine-particle suspension or the micro-sized powders was able to be injected into the plasma center under low pressures. As a result, the heat and mass transfer between the plasma jet and the sprayed materials were enhanced.The axial bi-cathode plasma torch was applied firstly to spray two kinds of YSZ feedstocks, including the YSZ suspension and the YSZ agglomerated powders. The results indicated that all the YSZ coatings exhibited relatively dense structures due to the high velocity of particles under low pressures. The coatings were composed of the melted particles, the agglomerated particles as well as the vapor deposition. It was found that the vaporization degree of YSZ was increased by using smaller particle size, lower ambient pressure, longer spraying distance and higher plasma power. In addition, all the YSZ coatings undergone a significant phase transformation from a monoclinic phase to a tetragonal phase, and the transformation degree was proportional to the vaporization degree. However, the mechanical properties of the resulting coatings had the opposite behaviors. The YSZ coatings prepared from the agglomerated particles, which had a bigger droplet size and less vapor deposition, showed a higher hardness and Young's modulus than the YSZ coatings fabricated from fine suspension did.Another high-energy plasma torch O3CP (Oerlikon Metco, Switzerland) was employed to in-situ synthesize the TiN coatings on Ti-6Al-4V alloys by reactive plasma spray under very low pressure. The pure Ti powders were sprayed into an N2 atmosphere under an input plasma power of 120 kW. The hybrid structured TiN coatings were synthesized, which was not previously achieved with other thermal spraying processes. It was known that the nitriding reaction occurred not only in the plasma jet but also on the substrate. Additionally, with increasing spraying distance, the nitriding effect was weakened, and the hybrid structure of TiN coating changed from dense laminar to porous columnar, according to the higher vaporization degree, lower reactant concentration and colder substrate. Nevertheless, they also were able to improve the mechanical properties of the Ti-6Al-4V substrate.
59

Investigation of electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications

Norlin, Anna January 2005 (has links)
People suffering from certain types of arrhythmia may benefit from the implantation of a cardiac pacemaker. Pacemakers artificially stimulate the heart by applying short electrical pulses to the cardiac tissue to restore and maintain a steady heart rhythm. By adjusting the pulse delivery rate the heart is stimulated to beat at desired pace. The stimulation pulses are transferred from the pacemaker to the heart via an electrode, which is implanted into the cardiac tissue. Additionally, the electrode must also sense the cardiac response and transfer those signals back to the electronics in the pacemaker for processing. The communication between the electrode and the tissue takes place on the electrode/electrolyte (tissue) interface. This interface serves as the contact point where the electronic current in the electrode is converted to ionic currents capable to operate in the body. The stimulation/sensing signals are transferred across the interface via three electrochemical mechanisms: i) non-faradaic charging/discharging of the electrochemical double layer, ii) reversible and iii) irreversible faradaic reactions. It is necessary to study the contribution of each mechanism to the total charge transferred to evaluate the pacing/sensing performance of the pacemaker electrode. In this thesis, the electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications have been investigated by electrochemical impedance spectroscopy, cyclic voltammetry and transient electrochemical techniques. All measurements were performed in synthetic body fluid with buffer capacity. Complementary surface analysis was performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The results reveal different interfacial behaviour and stability for electrode materials such as Pt, TiN, porous carbon, conducting oxides (RuO2 and IrO2 and mixed oxides) and porous Nb2O5 oxide. The influence of the charge/discharge rate on the electrode characteristics also has been evaluated. Although the rough and porous electrodes provide a high interfacial capacitance, the maximum capacitance cannot be fully employed at high charge/discharge rates because only a small part of the effective surface area is accessible. The benefit of pseudo-capacitive material properties on charge delivery was observed. However, these materials suffer similar limitations at high charge/discharge rate and, hence, are only utilising the surface bound pseudo-capacitive sites. Porous Nb2O5 electrodes were investigated to study the performance of capacitor electrodes. These electrodes predominantly deliver the charge via reversible non-faradaic mechanisms and hence do not produce irreversible by-products. They can deliver very high potential pulses while maintaining high impedance and, thus, charge lost by faradaic currents are kept low. By producing Nb oxide by plasma electrolysis oxidation a porous surface structure is obtained which has the potential to provide a biocompatible interface for cell adherence and growth. This thesis covers a multidisciplinary area. In an attempt to connect diverse fields, such as electrophysiology, materials science and electrochemistry, the first chapters have been attributed to explaining fundamental aspects of the respective fields. This thesis also reviews the current opinion of pacing and sensing theory, with special focus on some areas where detailed explanation is needed for the fundamental nature of electrostimulation/sensing. / QC 20101014
60

Reactive Hot Pressing Of ZrB2-Based Ultra High Temperature Ceramic Composites

Rangaraj, L 12 1900 (has links)
Zirconium- and titanium- based compounds (borides, carbides and nitrides) are of importance because of their attractive properties including: high melting temperature, high-temperature strength, high hardness, high elastic modulus and good wear-erosion-corrosion resistance. The ultra high temperature ceramics (UHTCs) - zirconium diboride (ZrB2) and zirconium carbide (ZrC) in combination with SiC are potential candidates for ultra-high temperature applications such as nose cones for re-entry vehicles and thermal protection systems, where temperature exceeds 2000°C. Titanium nitride (TiN) and titanium diboride (TiB2) composites have been considered for cutting tools, wear resistant parts etc. There are problems in the processing of these materials, as very high temperatures are required to produce dense composites. This problem can be overcome by the development of composites through reactive hot processing (RHP). In RHP, the composites are simultaneously synthesized and densified by application of pressure and temperatures that are relatively low compared to the melting points of individual components. There have been earlier studies on the fabrication of dense ZrB2-ZrC, ZrB2-SiC and TiN-TiB2 composites by the following methods: Pressureless sintering of preformed powders at high temperatures (1800-2300°C) with MoSi2, Ni, Cr, Fe additions Hot pressing of preformed powders at high temperatures (1700-2000°C) with additives like Ni, Si3N4, TiSi2, TaSi2, TaC Melt infiltration of Zr/Ti into B4C preform at 1800-1900°C to produce ZrB2-ZrC-Zr and TiB2-TiC composites RHP of Zr-B4C, Zr-Si-B4C and Ti-BN powder mixtures to produce ZrB2-ZrC, ZrB2-SiC and TiN-TiB2 powder mixtures at 1650-1900°C Spark plasma sintering of powder mixtures at 1800-2100°C There has been a lack of attention paid to the conditions under which ceramic composites can be produced by simple hot pressing (~50 MPa) with minimum amount of additives, which will not affect the mechanical properties of the composites. There has been no systematic study of microstructural evolution to be able to highlight the change in relative density (RD) with temperature during RHP by formation of sub-stoichiometric compounds, and liquid phase when a small amount of additive is used. The present study has been undertaken to establish the experimental conditions and densification mechanisms during RHP of Zr-B4C, Zr-B4C-Si and Ti-BN powder mixtures to yield (a) ZrB2-ZrC, (b) ZrB2-SiC, (c) ZrB2-ZrC-SiC and (d) TiN-TiB2 composites. The following reactions were used to produce the composites: (1) 3 Zr + B4C → 2 ZrB2 + ZrC (2) 3.5 Zr + B4C → 2 ZrB2 + 1.52rCx- 0.67 (3) (1+y) Zr + C → (1+y) ZrCx- 1/ (1+y) (y=0 to 1) (4) 2 Zr + B4C + Si → 2 ZrB2 + SiC (5) 2.5 Zr + B4C + 0.65 Si → 2 ZrB2 + 0.5 ZrCx + 0.65 SiC (6) 3.5 Zr + B4C + SiC → 2 ZrB2 + 1.5 ZrCx + SiC (5 to 15 vol%) (7) (3+y) Ti + 2 BN → (2+y) TiN1/(1+y) + TiB2 (y=0 to 0.5) (a) ZrB2-ZrC Composites: The effect of different particle sizes of B4C (60-240 μm, <74 μm and 10-20 μm) with Zr on the reaction and densification of composites has been studied. The role of Ni addition on reaction and densification of the composites has been attempted. The effect of excess Zr addition on the reaction and densification has also been studied. The RHP experiments were conducted under vacuum in the temperature range 1000-1600°C for 30 min without and with 1 wt% Ni at 40 MPa pressure. The RHP composites have been characterized by density measurements, x-ray diffraction for phase analysis and lattice parameter measurements, microstructural observation using optical and scanning electron microscopy. Selected samples have been analyzed by transmission electron microscopy. The hardness of the composites has also been measured. The results of the study on the effect of different particle sizes B4C and Ni addition on reaction and densification in the stoichiometric reaction mixture as follows. With the coarse B4C (60-240 μm and <74 μm) particles the temperature required are higher for completion of the reaction (1600°C and above). The microstructural observation showed that the material is densified even in the presence of unreacted B4C particles. The composite made with 10-20 μm B4C and 1 wt% Ni showed completion of the reaction at 1200°C, whereas composite made without Ni showed unreacted B4C (∼3 vol%) and the final densities of both the composites are similar (5.44 g/cm3). Increase in the temperature to 1400°C resulted in the completion of the reaction (without Ni) accompanied with a relative density (RD) of 95%. The composites produced with and without Ni at 1600°C had similar densities of 6.13 g/cm3 and 6.11 g/cm3 respectively (~97.3% RD). The Zr-Ni phase diagram suggests that the addition of Ni helps in formation of Zr-Ni liquid at ~960°C and leads to an increase in the reaction rate up to 1200°C. Once the reaction is completed, not enough Zr is available to maintain the liquid phase and further densification occurs through solid state sintering. The grain sizes of ZrB2 and ZrC phases after 1200°C are 0.4 μm and 0.3 μm, which are much lower than those reported in literature (2-10 μm), and may be the reason for reducing the densification temperature to 1600°C for stoichiometric ZrB2-ZrC composites. The effect of excess Zr (0.5 mol), over and above the stoichiometric Zr-B4C powder mixture, on reaction and densification of the composites is as follows. The formation of ZrB2 and ZrC phases with unreacted starting Zr and B4C is observed at 1000°C and with increase in temperature to 1200°C the reaction is completed. Since microstructural characterization reveals no indication of free Zr, it is concluded that the excess Zr is incorporated by the formation of non-stoichiometric ZrC (ZrCx-0.67). This observation is supported by lattice parameter measurements of ZrC in the stoichiometric and non-stoichiometric composites which are lower than those reported in the literature. X-ray microanalysis of ZrC grains in the stoichiometric and non-stoichiometric composites using transmission electron microscopy confirmed the presence of carbon deficiency. The composite produced at 1200°C showed the density of 6.1 g/cm3 (~97% RD), whereas addition of Ni produced 6.2 g/cm3 (~99% RD). The reduction in densification temperature for the non-stoichiometric composites is due to the presence of ZrCx even in the absence of Ni. The mechanism of densification of the composites at 1200°C is attributed to the lowering of critical resolved shear stress with increasing non-stoichimetry in the ZrC, which leads to plastic deformation during RHP. An additional mechanism may be enhanced diffusion through the structural point defects created in ZrC. The hardness of the composites are 20-22 GPa, which is higher than those of reported in literature due to the presence of a dense and fine grain microstructure in the present work. In order to verify the role of non-stoichiometric ZrC the study was extended to produce monolithic ZrC using various C/Zr ratios (0.5-1). Here again, stoichiometric ZrC does not densify even at 1600°C, whereas non-stoichiometric ZrC can be densified at 1200°C. (b) ZrB2-SiC Composites: Since ZrB2 and ZrC do not have good oxidation resistance unless they are reinforced with SiC, the present study has been extended to produce ZrB2-SiC (25 vol%) composites using Zr-Si-B4C powder mixtures. The samples produced at 1000°C showed the formation of ZrB2, ZrC and Zr-Si compounds with unreacted Zr and B4C and as the temperature is increased to 1200°C only ZrB2 and SiC remained. A fine grain (~0.5 μm) microstructure has been observed at 1200°C. During RHP, it was observed that the formations of ZrC, Si-rich phases and fine grain size at low temperatures was responsible for attaining the high relative density at a temperature of ~1600°C. The relative densities of the composites produced with 1 wt% Ni at 40 MPa, 1600°C for 30 min is 97% RD, where as composites without Ni showed a small amount of partially reacted B4C; extending the holding time to 60 min eliminated the B4C and produced 98% RD. The hardness of the composites is 18-20 GPa. (c) ZrB2-ZrC-SiC Composites: Since ZrC plays a crucial role in densification of ZrB2-ZrC and ZrB2-SiC composites, the study has been extended to reduce the processing temperature for ZrB2-ZrCx-SiC composites by two methods. In one of the methods, Si is added to the non-stoichiometric 2.5Zr-B4C powder mixture which is resulted in ZrB2-ZrCx-SiC (15 vol%) composites with ~98% RD at 1600°C. In another method, SiC particulates are added to the non-stoichiometric 3.5Zr-B4C powder mixture to yield ZrB2-ZrCx-SiCp (5-15 vol%) composites at 1400°C. The density of the 5 vol% SiC composite is 99.9%, whereas addition of 15 vol% SiC reduced the density to 95.5% RD. The mechanisms of densification of the composites are similar to those observed in ZrB2-ZrC composites. The hardness of the composites is 18-20GPa (d) TiN-TiB2 Composites: ZrB2, ZrC, TiB2, and TiN are members of the same class of transition metal borides, carbides and nitrides; however, their densification mechanisms appear to be different. In earlier work, the RHP of stoichiometric 3Ti-2BN powder mixtures yielded dense composite at 1400-1600°C with 1 wt% Ni addition, whereas composites without Ni required at least 1850°C. The major contributor to better densification at 1600°C (with Ni) appeared to be the formation of local Ni-Ti liquid phase at ~942°C (Ti-Ni phase diagram). The present work explores the additional role of non-stoichiometry in this system. It is shown that Ti excess can lead to a further lowering of the RHP temperature, but with a different mechanism compared to the Zr-B4C system. Excess Ti allows the transient alloy phase to remain above the liquidus for a longer time, thereby permitting the attainment of a higher relative density. However, eventually, the excess Ti is converted into a non-stoichiometric nitride. Thus, the volume fraction of a potentially low melting phase is not increased in the final composite by this addition. The contrast between these two systems suggests the existence of two classes of refractory materials for which densification may be greatly accelerated in the presence of non-stoichiometry, either through the ability to absorb a liquid-phase producing metal into a refractory and hard ceramic structure or greater deformability. Conclusions: The study on RHP of ZrB2-ZrC, ZrB2-SiC, ZrB2-ZrC-SiC and TiN-TiB2 composites led to the following conclusions: • It has been possible to densify the ZrB2-ZrC composites to ~97 % RD by RHP of stoichiometric Zr-B4C powder mixture with or without Ni addition. The role of B4C particle size is important to complete both reaction as well as densification. • Excess Zr (0.5 mol) to stoichiometric 3Zr-B4C powder mixtures produces dense ZrB2-ZrCx composite with 99% RD at 1200°C. The densification mechanisms in these non-stoichiometric composites are enhanced diffusion due to fine microstructural scale / stoichiometric vacancies and plastic deformation. • In the case of ZrB2-SiC composites, the formation of a fine microstructure, and intermediate ZrC and Zr-Si compounds at the early stages plays a major role in densification. • Starting with non-stoichiometric Zr-B4C powder mixture, the dense ZrB2-ZrCx-SiC composites can be produced with SiC particulates addition at 1400°C. • Non-stoichiometry in TiN and ZrC is route to the increased densification of composites through enhanced liquid phase sintering in TiN based composites that contain Ni and through plasticity of a carbon-deficient carbide in ZrC based composites.

Page generated in 0.0339 seconds