• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[en] STUDY OF THE REACTION SYSTEM TICL4(G)-NH3(G) IN A CROSS-FLOW REACTOR AT LOW TEMPERATURES: EFFECT OF PROCESS VARIABLES AND PRODUCTS CHARACTERIZATION / [pt] ESTUDO DO SISTEMA REACIONAL TICL4(G) - NH3(G) EM REATOR DE FLUXO CRUZADO EM BAIXAS TEMPERATURAS: EFEITO DAS VARIÁVEIS DE PROCESSO E A CARACTERIZAÇÃO DOS PRODUTOS

ALEXANDRE VARGAS GRILLO 07 July 2014 (has links)
[pt] Os nitretos, carbetos, boretos e óxidos de metais de transição na forma de nanopartículas, têm recebido nos últimos anos uma grande atenção no mundo científico, por apresentar propriedades físicas e químicas bem específicas, com aplicações diretas na indústria de alta tecnologia. Esta tese de doutorado foi motivada pelo desenvolvimento e avaliação experimental de uma nova configuração de reator, tubular e de fluxo cruzado, que promove um melhor contato entre as fases gasosas reagentes, possibilitando a execução da síntese de nanopartículas em temperaturas mais baixas. O reator consiste em um tubo de quartzo e um sistema de alimentação de gás NH3(g), dotado de chicanas que o redireciona promovendo uma distribuição mais homogênea deste nos orifícios de alimentação no reator. O TiCl4, uma vez vaporizado, é arrastado pelo argônio na direção axial do reator e o NH3 é injetado na direção radial central do reator. No aparato experimental desenvolvido foram avaliados os efeitos das variáveis do processo, temperatura, tempo espacial e pressão parcial do TiCl4 sobre o tamanho médio de cristalitos das partículas sintetizadas. Os resultados experimentais obtidos mostraram que no reator proposto foi possível produzir, na temperatura ambiente, nitreto de titânio (TiN) com 100por cento de conversão e tamanhos de cristalitos abaixo de 20 nm. Além da produção do TiN, também observou-se a formação de um co-produto, também particulado, o cloreto de amônio (NH4Cl). Nas análises por difração de Raios-X observou-se a presença de dióxido de titânio (TiO2) na forma de anatásio e de oxinitreto de titânio. O aparecimento destas fases pode ser explicado pela alta reatividade do nitreto de titânio com o oxigênio e vapor de água presentes na atmosfera e a sua elevada superfície específica. / [en] Nitrides, carbides, borides and oxides of transition metals in the form of nanoparticles have received in recent years the attention in the scientific world, by their specific physical and chemical properties, with direct applications to the high technology industry. This thesis was motivated by the development and experimental evaluation of a new reactor concept, tubular and cross-flow, which promotes better contact between the gas-phase reactants, allowing the execution of nanoparticle synthesis at lower temperatures. The reactor consists of a quartz tube and a gas supply system (NH3), equipped with baffles that redirects the gas promoting a more homogeneous distribution of it in the holes that feed the reactor. The TiCl4 vaporized is carried by argon gas, in the axial direction, to the reactor and NH3 is injected in the radial direction in the central region of the reactor. In the experimental apparatus developed were evaluated the effects of process variables, temperature, space time and TiCl4 partial pressure, on average crystallite size of the synthesized particles. The experimental results obtained show that in the proposed reactor was possible to produce, at room temperature, titanium nitride with 100% conversion and crystallite size below 20nm. Besides the production of the titanium nitride was also observed the formation of a particulate co- product, the ammonium chloride (NH4Cl). In the X-ray diffraction analyzes was observed the presence of titanium dioxide (anatase) and titanium oxynitride. The occurrence of these phases can be explained by the high reactivity of titanium nitride with oxygen and water vapor present in the atmosphere and their high specific surface.
32

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
<p>The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. </p><p>By using reactive PVD and gradually increasing the N<sub>2</sub>/Ar flow ratio, it was found that the work function (on SiO<sub>2</sub>) of the TiN<sub>x</sub> and ZrN<sub>x</sub> metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states.</p><p>A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO<sub>2</sub> and HfO<sub>2</sub> and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO<sub>2</sub>; the results agreed well with <i>C-V</i> and <i>I-V</i> data.</p><p>Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al<sub>2</sub>O<sub>3</sub>/HfAlO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al<sub>2</sub>O<sub>3</sub> dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al<sub>2</sub>O<sub>3</sub>.</p>
33

Metal Gate Technology for Advanced CMOS Devices

Sjöblom, Gustaf January 2006 (has links)
The development and implementation of a metal gate technology (alloy, compound, or silicide) into metal-oxide-semiconductor field effect transistors (MOSFETs) is necessary to extend the life of planar CMOS devices and enable further downscaling. This thesis examines possible metal gate materials for improving the performance of the gate stack and discusses process integration as well as improved electrical and physical measurement methodologies, tested on capacitor structures and transistors. By using reactive PVD and gradually increasing the N2/Ar flow ratio, it was found that the work function (on SiO2) of the TiNx and ZrNx metal systems could be modulated ~0.7 eV from low near nMOS work functions to high pMOS work functions. After high-temperature anneals corresponding to junction activation, both metals systems reached mid-gap work function values. The mechanisms behind the work function changes are explained with XPS data and discussed in terms of metal gradients and Fermi level pinning due to extrinsic interface states. A modified scheme for improved Fowler-Nordheim tunnelling is also shown, using degenerately doped silicon substrates. In that case, the work functions of ALD/PVD TaN were accurately determined on both SiO2 and HfO2 and benchmarked against IPE (Internal Photoemission) results. KFM (Kelvin Force Microscopy) was also used to physically measure the work functions of PVD TiN and Mo deposited on SiO2; the results agreed well with C-V and I-V data. Finally, an appealing combination of novel materials is demonstrated with ALD TiN/Al2O3/HfAlOx/Al2O3/strained-SiGe surface channel pMOS devices. The drive current and transconductance were measured to be 30% higher than the Si reference, clearly demonstrating increased mobility and the absence of polydepletion. Finally, using similarly processed transistors with Al2O3 dielectric instead, low-temperature water vapour annealing was shown to improve the device characteristics by reducing the negative charge within the ALD Al2O3.
34

Investigation of Novel Metal Gate and High-κ Dielectric Materials for CMOS Technologies

Westlinder, Jörgen January 2004 (has links)
The demands for faster, smaller, and less expensive electronic equipments are basically the driving forces for improving the speed and increasing the packing density of microelectronic components. Down-scaling of the devices is the principal method to realize these requests. For future CMOS devices, new materials are required in the transistor structure to enable further scaling and improve the transistor performance. This thesis focuses on novel metal gate and high-κ dielectric materials for future CMOS technologies. Specifically, TiN and ZrN gate electrode materials were studied with respect to work function and thermal stability. High work function, suitable for pMOS transistors, was extracted from both C-V and I-V measurements for PVD and ALD TiN in TiN/SiO2/Si MOS capacitor structures. ZrNx/SiO2/Si MOS capacitors exhibited n-type work function when the low-resistivity ZrNx was deposited at low nitrogen gas flow. Further, variable work function by 0.6 eV was achieved by reactive sputter depositing TiNx or ZrNx at various nitrogen gas flow. Both metal-nitride systems demonstrate a shift in work function after RTP annealing, which is discussed in terms of Fermi level pinning due to extrinsic interface states. Still, the materials are promising in a gate last process as well as show potential as complementary gate electrodes. The dielectric constant of as-deposited (Ta2O5)1-x(TiO2)x thin films is around 22, whereas that of AlN is about 10. The latter is not dependent on the degree of crystallinity or on the measurement frequency up to 10 GHz. Both dielectrics exhibit characteristics appropriate for integrated capacitors. Finally, utilization of novel materials were demonstrated in strained SiGe surface-channel pMOSFETs with an ALD TiN/Al2O3 gate stack. The transistors were characterized with standard I-V, charge pumping, and low-frequency noise measurements. Correlation between the mobility and the oxide charge was found. Improved transistor performance was achieved by conducting low-temperature water vapor annealing, which reduced the negative charge in the Al2O3.
35

Optimisation de détecteurs pour l'astronomie du rayonnement X : développement de jonctions supraconductrices pour l'isolation thermique dans les interconnexions / microcalorimètre,rayonnement X,Conductivité thermique aux interfaces,diaphonie,basses températures,

Goupy, Johannes 13 July 2012 (has links)
L’avenir des nouvelles caméras embarquées pour l’astrophysique spatiale semble passer par unaccroissement du nombre de pixels et un fonctionnement à très basse température (en dessous de 0,1 K).Avec cette évolution, le nombre important de fils en sortie du détecteur refroidi représente souvent lacharge thermique prédominante sur la source froide (cryostat).Dans ce contexte, l’isolation thermique entre les différents circuits de détection est un point crucial pources caméras. Une brique technologique innovante a été développée pour apporter une solution présentantune excellente conduction électrique couplée à une grande isolation thermique. Cette innovation,protégée par un brevet, permet de résoudre cet apparent paradoxe. La solution proposée consiste enl’empilement d’un grand nombre de couches minces de matériaux supraconducteurs dans lesinterconnexions.La résistance thermique à chaque interface est dépendante des propriétés élastiques des matériaux,de la qualité des interfaces et de la température à laquelle le système fonctionne. A très basse température,le modèle AMM, couplé aux mesures des caractéristiques des matériaux composants la multicouche,permettent une estimation théorique de la résistance thermique pour une interface. Les mesures effectuéesavec les liaisons supraconductrices à forte résistivité thermique concordent avec les estimationsthéoriques. Nous avons ainsi pu mesurer des résistances thermiques de l’ordre de 3,3.105 K/W à 200 mKpour une multicouche composée d’une succession (62 interfaces) de couches minces de nitrure de titaneet de niobium sur une surface de 16 mm2. Dans les conditions d’utilisation prévues pour une camérarayons X de 4000 pixels microcalorimétriques, l’utilisation de cette brique technologique devrait assurerune charge thermique sur la source froide (à 50 mK) très inférieure au μW pour plus de 8000 pointsde contact. Ce dispositif pourra être utilisé à l’avenir dans nombre de projets cryogéniques, lorsqu’une excellenteisolation thermique associée à une excellente conduction électrique sera recherchée. / Future of the next camera onboard space observatories implies a major enhancement in number of pixelsand a very low operative temperature (below 0.1 K). In this evolution, the large number of output wiresfrom the cool detector is often responsible of the most important thermal load onto the cold bath(cryostat).In this context, the thermal insulation between the different detection circuits is the bottleneck for thesecameras. An innovative technological component, protected by a patent, has been developed to tackle thisproblem. This device has both an excellent electrical resistivity and a very high thermal resistivity.The proposed solution is a stack of thin superconducting layers at electrical interconnections.The thermal resistance at each interface relies on the elastic properties of the materials used, the quality ofthe interfaces and temperature. The AMM model used in conjunction with the measured materialcharacteristics allows a theorical estimation of the thermal resistance per interface. The measurementsundertaken with superconducting connections with very high thermal resistivity are very well describedby this AMM model. We have measured thermal resistances as high as 3.3 105 K/W @ 200 mKfor a multilayer of 62 interfaces built with titaniun nitride and niobium alternatively on a 16 mm2 array.In the conditions foreseen for a 4000 micro-calorimeters camera operating at 50 mK in X-rays,this multilayer technique should allow a thermal load onto the cold bath that is much lower that 1 mWfor more than 8000 contacts.
36

Investigação das correlações entre parâmetros de deposição e propriedades estruturais e mecânicas de filmes de TiN preparados por sputtering reativo / Investigation on the correlations of deposition parameters, structure and properties of TiN films deposited by reactive sputtering

Affonço, Lucas Jorge 26 July 2018 (has links)
Submitted by Lucas Jorge Affonço (lucas_jorgeaffonco@yahoo.com.br) on 2018-09-25T18:16:47Z No. of bitstreams: 1 Dissertação_POSMAT_LucasJorgeAffonco.pdf: 1122070 bytes, checksum: 3aa8bf900f18ab0cc3c2d9fdbbc0ce2e (MD5) / Rejected by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: 1 - Inserir no corpo do texto uma cópia da ata de defesa, pois é um item obrigatório. Agradecemos a compreensão on 2018-09-26T13:33:08Z (GMT) / Submitted by Lucas Jorge Affonço (lucas_jorgeaffonco@yahoo.com.br) on 2018-09-26T13:39:25Z No. of bitstreams: 1 Dissertação_POSMAT_LucasJorgeAffonco.pdf: 1731555 bytes, checksum: 7c7c9ba43b8b832af33307bef8e74d22 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-09-26T17:02:25Z (GMT) No. of bitstreams: 1 affonço_lj_me_bauru.pdf: 1731555 bytes, checksum: 7c7c9ba43b8b832af33307bef8e74d22 (MD5) / Made available in DSpace on 2018-09-26T17:02:25Z (GMT). No. of bitstreams: 1 affonço_lj_me_bauru.pdf: 1731555 bytes, checksum: 7c7c9ba43b8b832af33307bef8e74d22 (MD5) Previous issue date: 2018-07-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O nitreto de titâno apresenta uma vasta gama de aplicações. Entre elas destacam-se as aplicações em recobrimento de superfícies que exploram características mecânicas tais como dureza e módulo de elasticidade do material para aplicações em biomateriais. Essas características e suas correlações com a microestrutura são investigadas, nesse trabalho, em função dos parâmetros de deposição de filmes de TiN. Os filmes foram depositados pela técnica de magnetron sputtering reativo em rádio frequência, sobre substratos de titânio, de sílica, de silício e de uma liga de titânio-nióbio. Nas deposições, foi utilizado um alvo de titânio puro e misturas gasosas de argônio e nitrogênio, com diferentes fluxos de nitrogênio. As potências empregadas foram de 240 W e 300 W, com diferentes tempos de deposição. Medidas de taxa de deposição e emissão óptica do plasma auxiliaram na escolha dos parâmetros de deposição. As análises das difrações de raios X mostraram que com o aumento do fluxo de nitrogênio os cristalitos tendem a apresentar uma orientação preferencial com os planos (200) do TiN paralelos à superfície do substrato, além de indicar a presença de strain nos filmes. Medidas de nanoindentação foram realizadas nas amostras, com o intuito de obter a dureza e o módulo de elasticidade dos filmes depositados com diferentes fluxos de nitrogênio. Buscando assim determinar a influência do fluxo sobre as propriedades mecânicas e a microestrutura dos filmes. Verificou-se que a dureza nas amostras depositadas a 10 sccm foi a maior, variando de 10 a 18 GPa de acordo com a profundidade de penetração, sendo essa amostra a que apresentou maior textura de orientação favorecendo os planos (200). O módulo de elasticidade foi maior para a amostra de 8 sccm, em torno de 140 GPa, sendo essa a amostra que apresentou maior strain compressivo. Verificou-se que a técnica de sputtering reativo é versátil para o crescimento dos filmes de nitreto de titânio, e que o fluxo de nitrogênio usado nas deposições é um parâmetro de grande impacto nas características mecânicas e estruturais dos filmes obtidos. / The titanium nitride (TiN) has mechanical properties that are useful in a wide range of applications. In special, it is being investigated to improve the surfaces of bone implants. The mechanical properties of TiN films deposited by reactive magnetron sputtering and their correlations with microstructure will be investigated in this dissertation as a function of the deposition parameters. The films were deposited in titanium, silica, silicon and titanium-niobium substrates. A pure titanium target and a mix of argon and nitrogen gases were used in the depositions. The influence of the variation of the reactive gas fluxes on the mechanical properties and in the microstructure of the films were investigated, for applied powers of 240 W and 300 W at 13.6 MHz. Deposition rate and plasma optical emission measurements helped to control the deposition parameters. X ray diffraction analysis show that all films present compressive strain and, at high nitrogen fluxes, a preferred crystallite orientation of planes (200) parallel to the substrate surface occurs. Nanoidentation measurements were performed, for different nitrogen fluxes, to obtain the hardness and elastic modulus of TiN films. The hardness of films deposited at 10 sccm, varied between 10 and 18 GPa, as a function of the penetration depth, and is higher than the observed in other samples. These films also showed the higher (200) plane texture. The elastic modulus is higher on films deposited at 8 sccm N2 flow (around 140 GPa). These films also showed the higher compressive strain. It was checked that the reactive sputtering is a resourceful technique for titanium nitride deposition, and nitrogen flux present a high impact in the structure and mechanical properties of the deposited films.
37

Élaboration de couches minces par HiPIMS : propriétés structurales et aspects énergétiques / Tailoring Structural and Energy-related Properties of Thin Films Using HiPIMS

Cemin, Felipe 13 December 2018 (has links)
La pulvérisation cathodique magnétron pulsée à haute puissance (HiPIMS) est un procédé de dépôt de couches minces dans lequel le flux de dépôt est principalement composé d’ions du matériau pulvérisé. Ce type de décharge permet de contrôler l’énergie et la direction des espèces qui seront déposées, ce qui est favorable à la modification de la structure et des propriétés finales des couches. Malgré tous les travaux de recherches menés pour caractériser et comprendre les conditions de décharge HiPIMS, la nécessité de développer des couches minces utiles à la société reste toujours d’actualité. La finalité de ce travail est l’obtention de couches minces HiPIMS plus performantes que celles obtenues aujourd'hui en utilisant des techniques de dépôt classiques. Pour cela il est indispensable d'identifier et d'optimiser les paramètres de dépôt permettant de modifier à la fois la microstructure des couches, la contrainte résiduelle et les propriétés liées à l'énergie telles que la résistivité électrique et la bande interdite. Trois matériaux sont au cœur de ce travail : le cuivre, le dioxyde de titane et le nitrure de titane. Les études expérimentales ont montré que les paramètres les plus importants pour obtenir les propriétés souhaitées étaient la quantité et l’énergie cinétique des espèces ionisées irradiant la couche au cours de sa croissance. Par ailleurs, les paramètres de croissance optimale entre couches métalliques et couches composées diffèrent considérablement. / High power impulse magnetron sputtering (HiPIMS) is a thin film deposition technique where the deposition flux is predominantly composed of ionized sputtered material. This enables control of energy and direction of the film-forming species and is thereby beneficial for tailoring the film structure and final properties. Although researchers world-wide have spent significant time and efforts characterizing and understanding the plasma process conditions in HiPIMS, research in new and improved HiPIMS-based thin film materials that find applications in areas of importance for society is still required. The goal of this work has been to identify and optimize the deposition parameters that allow tailoring the film microstructure, intrinsic stress and energy-related properties, such as electrical resistivity and optical band gap, to ultimately achieve superior HiPIMS coatings compared to what is achieved today using conventional deposition techniques. Three material systems constitute the core of the work: copper, titanium dioxide, and titanium nitride. From the work carried out it is concluded that the most important parameters affecting the film structure and properties are the amount as well as the kinetic energy of the ionized sputtered species irradiating the film during growth. These parameters differ substantially for optimum growth conditions of metallic and compound films.
38

Medição de tensões residuais em filmes finos durante o processo de deposição. / Thin films residual stress measurement during deposition process.

Lagatta, Cristiano Fernandes 28 July 2011 (has links)
Neste trabalho foram realizadas algumas deposições de filmes de Nitreto de Titânio sobre substrato de aço inoxidável. Foi utilizado o processo conhecido como triodo magnetron sputtering. Os parâmetros de deposição foram mantidos entre as deposições, exceto pela voltagem de bias no substrato, que foi variada de uma deposição para outra. Medições in-situ das tensões residuais no filme depositado foram realizadas. As medições foram feitas através do método da curvatura do substrato, utilizando-se um sensor capacitivo posicionado dentro da câmara de deposição. Embora o dispositivo não tenha sido capaz de quantificar os valores de tensão, foi possível identificar a natureza das mesmas, indicando se elas são de caráter trativo ou compressivo. Comprovou-se a possibilidade do uso de sistemas capacitivos para medições em sputtering. Observou-se que os filmes depositados apresentaram tensões de caráter trativo durante as deposições. / In this work, a series of depositions of titanium nitride thin films was conducted in a triode unbalanced magnetron sputtering chamber. Similar parameters were selected during each deposition, except for the substrate bias voltage, which was different for every deposition. An in-situ measurement of film residual stresses was carried out as the depositions proceeded. This measurement was based on substrate curvature, which was assessed by a home-built capacitive sensor positioned inside the sputtering chamber. Although the measurement device was not able to quantify the stress values, it was possible to identify if they were tensile or compressive. It was proved the possibility of using capacitive measurement devices in sputtering processes. It was possible to observe that the films underwent tensile stresses during the deposition.
39

ECR Assisted Deposition of Tin And Si3N4 Thin Films For Microelectronic Applications

Vargheese, K Deenamma 07 1900 (has links)
The broad theme of the present research investigation is Ion Assisted Deposition of thin films and its effect on the properties of thin films. Though this activity has been of interest to researchers for more than a decade, the development of different types of ion sources with control over the ion flux and energy, makes it a current topic of interest. Ion assisted deposition was successful in depositing thin films of many material with desired qualities, however, there are certain class of materials whose deposition has been rather difficult. This has mainly been attributed to higher energies and low ion flux of conventional ion sources. The advent of ECR ion sources for thin film deposition has given impetus to the deposition of such materials. This is due to the low energy high-density plasma generated in this type of sources. Hitherto, these sources were widely used in PECVD techniques and only recently the importance of ECR sources in PVD techniques has been realized. This thesis is on the development of ECR plasma source for ion assisted deposition of thin films using PVD techniques. This thesis is organized into six chapters. The first chapter gives an introduction on the ion assisted growth of thin films and the importance of ECR plasma. A detailed discussion on various aspects of ECR sources has been included. The design details on the development of ECR source have been discussed in the second chapter. The performance of ECR source as analyzed by the Langmuir probe are also discussed. Variation of plasma parameters like ion density, electron temperature, plasma potential and floating potential as a function of pressure and microwave power have been studied using Langmuir probe analysis. An ion density of the order of 1011/cm3 was measured at a distance of 8 cm from the plasma source with a microwave power of 400 watts. This was comparable to the ion density reported in downstream plasma of ECR sources. The behavior of plasma parameters with variation in microwave power and pressure was explained on the basis of microwave transmission above critical ion density and the microwave power absorption. The uniformity of the plasma parameters at the substrate position (29 cm from the ECR source) was found to be ± 2% over a diameter of 12 cm, which makes the ion source suitable for ion assisted deposition. The third chapter deals with the simulation and experimental study of the ECR sputtering process. ECR sputter type sources are equipped with cylindrical targets. The sputtered flux distribution on the substrate depends on target geometry, sputtering pressure and target-substrate distance. The effect of cylindrical geometry on the distribution of sputtered flux has been simulated by Monte Carlo methods. It is found that the sputtered flux distribution at different pressures and target-substrate distances in ECR sputter type source differs from the conventional glow discharge sputtering system equipped with planar targets. The simulated results are compared with the experimental results. The simulated data agree very well with the experimental data. The deposition and characterization of the TiN thin films for diffusion barrier applications in copper metallization have been discussed in the fourth chapter. Titanium nitride films are prepared by ECR sputtering. The effect of high density ion bombardment on the morphology, orientation and resistivity of the films was studied. It was observed that films with atomic smoothness could be prepared by ECR sputtering. Also the high density ion bombardment has been found to be effective for the film growth in (100) orientation. The behavior of TiN films deposited by this method as a diffusion barrier in copper metallization has been investigated. The resistivity measurements and RBS depth profile studies showed that up to 700°C there is no diffusion of copper into silicon. This shows that ECR sputtered TiN can be used as an effective diffusion barrier in copper metallization. The fifth chapter contains investigations on the ECR assisted growth of silicon nitride films. The films are characterized for composition, morphology and chemical bonding using AES, RBS, AFM, XPS and FTIR. AFM studies revealed that ion bombardment results in the reduction of surface roughness, which indicates dense film growth. The effect of ion assistance on the optical and electrical properties is studied in detail. Films prepared with microwave power ranging from 100 to 200 watts are having bandgap and refractive index of 4.9 eV and 1.92 respectively. Interface state density of silicon nitride films prepared in the above mentioned range was found to be 5x10 10 eVcm2. These films exhibited a resistivity of 10 13 Ω, cm and critical field of 4 MV/cm. The electrical conductivity in these films has been explained on the basis of Poole and Frenkel conduction. The low value of interface state density, higher resistivity, and critical field show that good quality SiN4 films can be deposited with low energy high density ECR plasma. A detailed summary of this research investigation has been discussed in the last chapter. The thesis is concluded with a discussion on the need of focused ECR source to establish ECR assisted deposition as a versatile technique for the growth of thin films.
40

Ätzen von Titannitrid mit Halogenverbindungen / Kammerreinigung mit externer Plasmaquelle / Dry etch of Titanium Nitride TiN with halogenides in remote plasma source for chamber clean applications

Hellriegel, Ronald 19 June 2009 (has links) (PDF)
Mit zunehmender Miniaturisierung mikroelektronischer Bauelemente steigen die Anforderungen an reproduzierbare qualitätskonforme Schichten. Um die zur Herstellung notwendigen ALD/PVD/CVD-Schichtabscheideanlagen in einen zuverlässigen Zustand zu versetzen, ist eine regelmäßige Kammerreinigung notwendig. Während des Abscheideprozesses werden nicht nur das Substrat, sondern auch die umliegenden Kammerteile beschichtet. Diese Schichten wachsen mit jedem Beschichtungszyklus weiter an. Der Stress zwischen Schicht und Kammerwand steigt beständig, und es besteht das Risiko das Teile abplatzen und auf die Waferoberfläche fallen und damit die Struktur unbrauchbar machen. Um das zu verhindern, muss die Kammerwand in einen regelmäßigen Zustand versetzt werden, in dem sichergestellt ist, daß keine Schichtreste abplatzen können. In der vorliegenden Arbeit wird ein neues Verfahren zur Trockenreinigung von ALD-Titannitrid Kammern vorgestellt. Dazu wurden TiN-Stücke (hergestellt im ALD, CVD, PVD-Verfahren) auf einem temperaturgeregelten Probenhalter platziert. Eine Argon/NF3 Gasmischung wurde in einer externen Plasmaquelle (RPS) zerlegt und in die Reaktionskammer geschleust. Die Ätzung wurde mit in-situ Reflexionsmessung beobachtet. Experimente mit Chlorzugabe wurden unternommen und ein starker Einfluss auf den Ätzmechanismus beobachtet. Die Ätzraten des TiN sind exponentiell abhängig von der Temperatur und proportional abhängig von der Verfügbarkeit atomaren Fluors. Dieses wird bei der Zerlegung von NF3 frei gesetzt und steht der Reaktion zur Verfügung. Die NF3-Zerlegung in Fluor und Stickstoff wurde mit Hilfe der Massenspektrometrie (QMS) untersucht, Zerlegungsgrade größer 96% wurden erreicht. Mit Hilfe dieser Messung kann der Einfluss der Kammerreinigung auf den Treibhausgasausstoß (GWP) bestimmt werden. Mit dem Ar/NF3-Verfahren können die GWP-Emissionen um 90% im Vergleich zur RIE-Ätzung mit SF6 reduziert werden. Mit Argon/Chlor-Plasmen konnte kein Titannitrid geätzt werden, da die physikalische Sputterkomponente fehlte. Durch Hinzufügen von Chlor zu einer Ar/NF3-Gasmischung konnte die Ätzrate um bis zu 270% im Bereich niedrige Temperaturen/niedriger Druck gesteigert werden. Bei höheren Temperaturen/höherem Druck fielen die Ar/NF3/Chlor Ätzraten allerdings deutlich hinter die des Ar/NF3 zurück. Die dazu führenden Effekte werden untersucht und ausgeführt. Die Nutzung von externen Plasmaquellen bietet eine vielversprechende Alternative um Abscheideanlagen von TiN-Rückständen reinigen zu können. Bei hohen Temperaturen werden deutlich höhere Ätzraten als bei anderen Schichten (SiN, SiO2, W) erreicht. Für Anwendungen im niedrigen Temperaturbereich erlaubt die Zugabe von Chlor interessante Anwendungsmöglichkeiten. / Demands on state of the art deposition technologies for semiconductor production focus on uniformity, repeatability and low defectivity. The chamber condition is a key parameter to achieve these high demands in chemical vapour deposition (CVD) processes and are even more critical to the atomic layer deposition processes (ALD). During the deposition process not only the wafer surface but other chamber parts as well are covered with a thin film. This film accumulates during the deposition cycles and is prone to fall off the walls and pollute the wafer surface. The chamber parts that are exposed to the deposition must be set back to a steady state so that no deposits fall off the walls. The chamber condition also changes uncontrolled with varying film condition on the wall. A new approach for cleaning of ALD-titanium nitride (TiN) deposition chambers was investigated. To determine etch rates TiN-samples (created by ALD, CVD and PVD) were placed on a temperature controlled sample holder. An argon/NF3 mixture was excited in an upstream remote plasma source (RPS) and then routed through the reaction chamber. No further plasma activation inside the reaction chamber was done. The etching was monitored by in-situ reflectometry and etch rates were calculated. The effect of chlorine addition was also studied and strong influence on etch rates was found. The etch rate of TiN is dependent exponentially on temperature and very low etch rates were achieved below 70◦C at a chamber pressure ranging from 20-300 Pa. It was found that this correlates very well with the vapour pressure of the reaction product TiF4. At temperatures of 300◦C etch rates up to 800 nm/min were achieved. The optimum pressure for etching was found at 100 Pa while the pressure effect was small. The etch rate was mainly dependent on the availability of activated fluorine to create TiF4 by the reaction 2 NF3 → N2 + 6 F* 2 TiN + 8 F* → 2 TiF4 + N2 The NF3 decomposition to nitrogen and fluorine was monitored by quadrupole mass spectrometry (QMS) and was found to be greater than 96%. This figure allows an estimation of the amount of Global warm potential (GWP) gas emmited by the process for environmental considerations. Using argon/NF3 or argon/fluorine mixtures in RPS devices reduces the GWP emissions by more than 90% compared to RIE plasma cleaning with SF6. No etching occurred by using argon/chlorine only mixtures as no physical etch component was involved in RPS etch. However adding chlorine to the argon/NF3 mixture accelerated the etching process. Chlorine addition to the argon/NF3 mixture increased the etch rates up to 270% in the low pressure/low temperature regime. At higher temperatures or higher pressures the etch rates dropped below the etch rates achieved solely with fluorine chemistry. It must be emphasized that there is no physical acceleration of the ionized molecules toward the etched sample in this remote plasma setup. The usage of a remote plasma offers an alternative way to remove residues from chambers running TiN deposition processes. At high temperatures the Ar/NF3 offers remarkably high etching rates for TiN compared to other films (silicon nitride, -oxide, tungsten) usually cleaned by remote plasma. For low temperature applications the chlorine enhancement offers an interesting alternative to accelerate the etch process.

Page generated in 0.0627 seconds