• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 52
  • 49
  • 20
  • 15
  • 12
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 602
  • 602
  • 602
  • 139
  • 130
  • 128
  • 111
  • 98
  • 89
  • 68
  • 64
  • 63
  • 61
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A study of the ZrO2/NiO interfaces

Chen, Jiun-Yang 24 August 2011 (has links)
The stable interfaces between NiO and ZrO2 reached by nanofilms interface rotation method are reported in this study. Epitaxial nanofilms of NiO and ZrO2 were synthesized on single crystal NaCl (001), (011), (111) surfaces. All nanofilms are investigated by transmission electron microscopy and selected-area diffraction (SAD) patterns. Composite nanofilms were formed by overlapping nanofilms of NiO and ZrO2 at difference angles and thermally treated. The rotation process and final stable interfaces in the overlapped nanofilms are analyzed by SAD patterns. Orientation relationships and interface rotation are analyzed. This study found five new interfaces. (1) (001)N/ Z¡A[110]N//[110]Z (2) (001)N/ Z¡A[100]N//[110]Z (3) N/ Z¡A[110]N//[110]Z (4) N/ Z¡A[111]N//[110]Z (5) N/ Z¡A[001]N//[110]Z
22

Study on epitaxial growth of Ni on polycrystalline Cu by electrodeposition

Liu, Ying-chen 06 September 2011 (has links)
The present study aims at clarifying the effects of processing parameters and substrate orientation on the epitaxial growth of Ni on polycrystalline Cu by electrodeposition from a sulfamate solution. The deposits were analyzed by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), auger electron spectroscopy (AES) and transmission electron microscopy (TEM). Two morphologies: rough and smooth, of the substrate surface were introduced by electropolishing. Auger electron spectroscopy showed that Ni was deposited on both areas without preference. However, the deposition rate for the rough area was slightly higher at a low current density of 0.01 A/dm2. At higher current densities, both areas possessed the same rate of deposition. In-plane TEM results demonstrated that Ni deposited on Cu epitaxially regardless the orientation of the Cu grains, electrolyte temperature and current density. EBSD analysis indicated that the Ni epilayer with an orientation of <001>//ND grew epitaxially to as thick as 12 £gm, whereas randomly oriented Ni nucleated on the epilayer having orientations of <011>//ND or <-111>//ND on prolonging deposition at current of 10 A/dm2. In other words, the epitaxial growth of Ni on Cu cannot be sustained to a thickness of hundreds of micrometers without a <001>//ND orientation.
23

Epitaxial Growth of TiO2 Thin Film on NaCl Substrate by Oxidation of TiO Thin Film

Kao, Chung-ho 28 February 2012 (has links)
Ti thin films were deposited by a radio frequency ion-beam sputtering system. Deposition resulted from sputtering a Ti target (99.995%) with an Ar ion beam. Epitaxial TiO thin films with different orientations, which came from oxidizing Ti thin films, were prepared on single-crystal NaCl substrate. The formation of epitaxial TiO2 thin films (anatase or rutile phase) by oxidation of epitaxial TiO thin films was investigated. The composition, microstructure, and orientation relationships between interfaces were analyzed by TEM and Fourier transformation in the present report. Epitaxial TiO thin films with different orientations were prepared on single-crystal NaCl substrate in the present study. The formation of epitaxial TiO2 thin films (anatase or rutile) by oxidation of epitaxial TiO thin films, which were first grown on different NaCl surfaces, was investigated. The composition, microstructure, and orientation relationships between interfaces were analyzed by TEM and Fourier transformation in this report. The TiO to anatase phase transformation has been studied by transmission electron microscopy in this Article. It is shown that prior formation of TiO from Ti film can induce the formation of anatase by thermal oxidation in air, otherwise only rutile is formed. Ti film deposited on the NaCl (001) surface is induced to form epitaxial TiO film by thermal oxidation in air. Further thermal oxidation in air partially transformed TiO into anatase (A) with a parallel orientation relationship of {200}A // {200}TiO. Detailed analysis of the lattice fringes image of the specimen reveals the presence of very high density of misfit dislocations. The TiO to anatase transformation is reversible as further annealing in a vacuum can turn the anatase back into TiO and eliminates the misfit dislocations. The transformation is analyzed in terms of the crystal structure, orientation relationship, and the dislocation distribution, which show that the TiO to anatase transformation is due to the close similarity between their structures. (Chapter 1) The anatase TiO2 (001) surface was shown to have superior photoreactivity. Epitaxial anatase (001) films used to be grown on single-crystal SrTiO3 and LaAlO3 substrates. It is shown in this report that these films can be grown also on the NaCl substrate, which is much cheaper and easily prepared. Epitaxial TiO (001) films were first grown on the NaCl (001) substrate. By testing the TiO-to-anatase transformation over temperature and time ranges, an epitaxial anatase (001) film was prepared by simple thermal oxidation in air. The formation of a single-variant anatase (001) film instead of a multiple-variant film is discussed in this report. (Chapter 2) An epitaxial rutile (100) thin film has been grown on NaCl substrate instead of other more expensive substrates. An epitaxial TiO (111) thin film with minor Ti phase was first deposited on the NaCl (111) surface by thermal evaporation. It was then transformed into the epitaxial rutile (100) thin film by subsequent thermal oxidation in air. TEM was used to analyze the phases and the orientation relationship. Our previous result showed that an epitaxial anatase (001) film was formed on the NaCl (001) surface in a similar process. The substrate-dependent formation of different TiO2 phase is also discussed in terms of the mismatch of the interfaces. (Chapter 3)
24

Growth of ZnO (11-20) Thin Film on NaCl Substrate

Wang, Cheng-Wei 18 July 2012 (has links)
This experiment use NaCl (001) single crystal as substrate, and the target is zinc oxide, to generate a-plane (112 ¡Â0) zinc oxide nanothim. The nanofilm is used as a buffer layer generating by Ion Beam Sputtering, and then increasing the thickness by Plasma sputtering. Part of specimens to proceed atmospheric heat treatment with different temperature and time, and part of specimens to change the ratio of the gas when the thin film is growth, then use of Transmission electron microscopy (TEM) and Photoluminescence (PL) as the analysis of film properties. The results of experiment, show that (112 ¡Â0) plane have more stringent conditions when generate of thin film, and easy to become the ring of electron diffraction with no-epitaxy .But finally we get a data what can generate a well a-plane ZnO thin film, the substrate temperature of 400 ¢X C, the sputtering time of 1 hour, Ar/O2 = 1.5. From the results of Photoluminescence, we find that there are zinc vacancies in ZnO thin film, probably there are too many oxygen atoms. While the heat treatment in nitrogen, zinc vacancies are reduced rapidly. Indicating that oxygen atoms within the film are reduced by nitrogen atoms or replace the position of the oxygen atoms.
25

An electron microscopic study of iron-sulfide minerals inherited from fluid inclusions in apatite from the UHP metamorphosed eclogites at Northern Dulan belt, North Qaidam

Wang, Yi-Liang 11 September 2012 (has links)
Apatite is one of the accessory minerals in the UHP metamorphosed eclogites at Northern Dulan belt, North Qaidam. It appears in three kinds of occurrences: (1) included in garnet which often shows cracks along the apatite grains, (2) coexisting with omphacite, rutile and/or clinozoisite in matrix and often surrounded by garnet, and (3) coexisting with retrograded minerals. The three eclogite samples examined in the present study are enriched in garnet. Two of them contain up to 80 vol.% garnet and the other is a porphyry of medium-grained garnet. They commonly show cracks and features of retrograde metamorphism, such as fissure-filling of secondary minerals including calcite or greenschist facies minerals. There are two size-ranges of well-oriented sulfide minerals included in apatite. One is nanometer-sized sulfide needles (50 ¡Ñ 20 ~ 870 ¡Ñ 120 nm) and particles (55 ~ 370 nm). The other is micrometer-sized sulfide needles (~20 ¡Ñ 0.5 £gm) and rods (~2.5 ¡Ñ 0.5£gm). Fluid inclusions and the micrometer-sized sulfide minerals commonly occur in the apatite grains that are near the cracks. Both nanometer- and micrometer-sized sulfide minerals are elongated with their long axes being normal or parallel to the c axis of the apatite. We used SEM-EDS and TEM-EDS to analyze and found that the sulfide minerals are troilite, pyrrhotite, Cu-bearing pyrrhotite and chalcopyrite. There are two sets of preferred crystallographic orientations for the dominated troilite and host apatite. The rod troilite is elongated along its a axis and <001>troilite // <001>apatite, <48-3>troilite ∡ <13-3>apatite = ~ 0.6º, (2-10)troilite // (3-10)apatite, <100>troilite ∡ <100>apatite = ~ 10º. The needle troilite is also elongated along its a axis and <001>troilite ¡æ <001>apatite, <-110>troilite ∡ <-12-2>apatite = ~ 1.3º, (11-2)troilite // (0-1-1)apatite. The preferred crystallographic orientation relationships, in terms of the c axis of troilite being parallel or normal to the c axis of host apatite, are similar to those for oriented quartz precipitates and omphacite hosts in the previous studies. According to the observations that only few sulfide minerals included in other minerals, the occurrences of apatites, and the microtextures of sulfide minerals, we suggest that the origin of sulfide minerals may relate to metasomatism during plate subduction. Metal ions such as iron, copper, cobalt and nickel were carried by chlorine- and sulfur-enriched fluids, which might be trapped as primary fluid inclusions in the apatite. The sulfide minerals then formed at the sites of fluid inclusions with the aid of fluids and available ions.
26

Phase-transformation-induced microstructures in perovskites

Cheng, Shun-Yu 26 November 2007 (has links)
Phase-transformation-induced microstructures, including twin domains, anti-phase domains and inversion domains have been analyzed using the scanning and transmission electron microscopy for BaTiO3, BaCeO3 and CaTiO3 of the perovskite structure. Differential etching rate was taken to identify the ferroelectric domains in tetragonal (t-) BaTiO3. Space group Pbnm (No. 62) usually adopted for the orthorhombic crystals by materials scientists is assumed throughout this research to avoid confusion of the plane and direction indices. Traditional contrast analysis was adopted for determining dislocation Burgers vectors (b) and fault vectors (R) in deformed and phase-transformed perovskites, synthetic ceramics (BaTiO3, BaCeO3 and CaTiO3) as well as natural minerals (CaTiO3), polycrystalline (BaTiO3, BaCeO3 and CaTiO3) as well as single crystal (CaTiO3). Atomic images for the structures of twin boundaries and anti-phase boundaries were taken by high resolution technique and image contrast enhancement was performed using fast Fourier transform. Failure of Friedel¡¦s law is adopted for determining if the crystal belongs to non-centrosymmetric point groups. Whether the twins are £_-, £\- or £k-type (i.e. anti-phase domain boundaries) is analysed from the contrast of extreme fringe patterns. Tilting experiments were performed on selected area diffraction patterns containing un-split row of reflections to ensure that the twin boundaries are the reflection or rotation type. Transformation twinning in all perovskites studied here follows the prediction by the relation of point group symmetries between the high- and low-symmetry phases, assuming continuous, diffusionless, second-order transitions that obey the restrictions imposed by the Landau theory of phase transition. Although such predictions of transformation-induced twinning are only permitted when crystallographic group-subgroup relationship exists and structural coherence retains between the high- and low-symmetry phases, experimental observations for r (rhombohedral) ¡÷ o-BaCeO3 and t ¡÷ o in CaTiO3 that are not related by group-subgroup, c (cubic) ¡÷ t (tetragonal) in CaTiO3 and and c (cubic) ¡÷ t (tetragonal) in BaTiO3 that are related by group-subgroup, are all consistent with the predictions from loss of point group symmetry elements and change of unit cell volume. In order that the Landau theory is conformed, however, an intermediate phase of either the lowest common supergroup (cubic Pm m) or highest common subgroup (monoclinic C2/c), with phase transition experiencing multistage pathways suggested by Christy and assumption of non-disruption conditions proposed by Guymont, was identified to bridge between two structures, such as rhombohedral and orthorhombic that are not group-subgroup related. Both the 90o and 180o ferroelectric twin domains in t-BaTiO3 are the reflection type and have been identified in pressureless-sintered ceramics. Further, fault vectors (R = £`<110]) for such domain boundaries were determined, boundary planes of {110) for the former, {100) and {220) for the latter deduced accordingly. The polar c-direction between adjacent domains was determined by differential etching rate across domain boundaries, convergent beam electron diffraction was also adopted for identification and confirmation of the c-axis for two types of domains in t-BaTiO3. Plastic deformation resulting from the thermodynamic driving force for sintering (?p) intensified by a multiplication factor £p) was evidenced microstructurally from analysing dislocations in pressureless-sintered BaTiO3 where a Frank-Read source was observed. Slip systems are activated for the effective stress acting on the slip plane along the slip direction has exceeded the critical value of resolved shear stress (£nCRSS) and yielding occurs. It has contributed to densification, i.e. the overall system shrinkage of a green powder compact, although if such contribution is at all significant requires studies of sintering kinetics to ascertain. Dislocation dissociation into the scallop-shaped half partials according to the following reactions is determined from analysing corresponding Burgers vectors. [010] + [001] ¡÷ [011] [001] + [10 ] ¡÷ [100] [001] + [110] ¡÷ [111] Both transformation twins lying in {110) and {112) and anti-phase domain boundaries with R = 1/2<111> are detected in o-BaCeO3. For orthorhombic (o-) BaCeO3, fault vectors of the latter R = 1/2<111> determined by contrast analysis was confirmed by high-resolution imaging, but on the contrary, fault vectors the former R = £`<110] and £`<021], respectively, could not be determined from such images. Utilizing the technique of large-angle convergent beam electron diffraction, such fault vectors and dislocation Burgers vectors determined by traditional contrast analysis have been confirmed. Both twinning and dislocations were observed in hot-pressed CaTiO3 prepared in a multi-anvil apparatus. Such twins are deformation twins since hot-pressing was conducted in the orthorhombic stable phase field at 1000oC under 8 GPa. Since fault vectors R = £`<110] determined for {112) and {110) twins are different from the transformation-induced twins in o-CaTiO3, R = £`<021] determined for the {112) twinning in natural perovskite may serve as a diagnostic feature for the deformation twins. Plastic deformation in hot-pressured sample was contributed by both slip and twinning. Slip occurred via slip systems with dislocations of b = [110] gliding in (110) is therefore {110}o <1 0>o (equivalent to {100}pc <001>pc, where pc for pseudo-cubic) often found in perovskites deformed at high temperatures. Another set of dislocations with b = [001] in screw orientation was also determined. APB with R = 1/2<111> detected in natural minerals suggests that the phase transition sequence in CaTiO3 is better described by: (c) ¡÷ t (I4/mcm) ¡÷ o (Pbnm) and such APB are generated from loss of the lattice point at I-centre (1/2,1/2,1/2) in the absence of a second orthorhombic Cmcm between t-I4/mcm and o-Pbnm reported before from neutron and X-ray powder diffraction studies.
27

Transmission electron microscopy study of growth of oxide film in nanoparticles of Cr and Fe /

Chan, Chun Man. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 58-59). Also available in electronic version. Access restricted to campus users.
28

Coalescence and sintering in metallic nanoparticles : in-situ transmission electron microscopy (TEM) study

Asoro, Michael Adewunmi, 1982- 12 July 2012 (has links)
Nanoparticles possess unique physical, chemical, optical and electronic properties stemming from their nanoscale dimensions and are currently used in catalysis, microelectronics, drug delivery, as well as other applications. However, due to their large surface area-to-volume ratio, nanoparticles have a strong tendency to coalesce and sinter during processing or usage over short time scales and at low temperatures, which lead to significant changes in behavior and performance. In this work, in-situ transmission electron microscopy (TEM) heating has been used to investigate the effects of particle size, temperature and carbon capping layers on sintering in face-centered cubic (FCC) metallic nanoparticles. For the first time, we make direct and real-time measurements of nanoparticle size, neck growth, dihedral angle and grain boundary motion during sintering, which are then used to calculate fundamental material transport parameters such as surface diffusivity and grain boundary mobility. We observe that carbon surface coatings typically present on most commercial nanoparticles can significantly inhibit sintering in nanoparticles. Also, a new mechanism for coalescence in nanoparticles is shown where small clusters on the support can initiate neck growth by forming a bridge between the nanoparticles consisting of individual atoms or small clusters of atoms. In-situ TEM experiments provide critical and valuable real-time dynamic information for direct investigation of the link between the evolution of sintering and controlling mechanisms, which conventional experiments such as post-mortem TEM observations are not capable of conveying. / text
29

Transmission Electron Tomography: Imaging Nanostructures in 3D

Wang, Xiongyao Unknown Date
No description available.
30

Characterization of Starch Nanoparticles by Fluorescence Techniques

Yi, Wei 21 May 2015 (has links)
Abstract The properties of starch nanoparticles (SNPs) labeled with the fluorescent dye pyrene (Py-SNPs) were probed by using fluorescence quenching, pyrene excimer formation, and transmission electron microscopy (TEM). Pyrene labeling of the SNPs was achieved by reacting 1-pyrenebutyric acid with the hydroxyl groups of the SNPs under basic conditions and in the presence of diisopropylcarbodiimide. This procedure did not degrade the SNPs as confirmed by dynamic light scattering (DLS) and afforded a means to generate a pyrene labeling level ranging from 0.5 to 5.0 mol% of the glucose units making up the SNPs. A polymeric quencher was also synthesized to probe the accessibility of the interior of the Py-SNPs by using fluorescence quenching measurements. The polymeric quencher was a 2K poly(ethylene glycol) terminated at one end with a methyl group and a nitropropane group at the other. Unfortunately these quenching experiments were abandoned when it was found that the polymeric quencher synthesized for these experiments absorbed too strongly where pyrene absorbs. Intramolecular pyrene excimer formation in the Py-SNPs was investigated by steady-state and time-resolved fluorescence. These experiments demonstrated that the Py-SNPs contract but do not overlap like linear polymers do in the semi-dilute regime. They also showed that despite the inherent rigidity of starch, the Py-SNPs deformed in water to allow their hydrophobic pyrene labels to cluster toward the center of the SNPs to minimize pyrene-solvent contacts. This segregation of the hydrophobic pyrene labels led to a distinct core-shell structure for the Py-SNPs which was illustrated in TEM images acquired on films prepared with the Py-SNPs. In summary, this thesis has uncovered some unexpected properties of the SNPs. Their branched structure makes their interpenetration difficult in the semi-dilute regime which forces them to contract. SNPs are thus deformable and their deformation can be probed quantitatively by using fluorescence and TEM.

Page generated in 0.0391 seconds