Spelling suggestions: "subject:"[een] TURBULENCE MODEL"" "subject:"[enn] TURBULENCE MODEL""
11 |
Simulação numérica do escoamento turbulento em motores de combustão internaZancanaro Junior, Flavio Vanderlei January 2010 (has links)
Com os grandes avanços ocorridos na disponibilização de computadores, existe uma tendência contínua para a utilização de técnicas computacionais auxiliando no projeto de equipamentos de engenharia. Cada vez mais estão se obtendo resultados bastante próximos às condições reais, incluindo a simulação de motores de combustão interna. Neste sentido o presente trabalho tem o objetivo de analisar o escoamento turbulento no processo de admissão de ar em um motor operando em ciclo Diesel. A investigação é focada na determinação da influência do passo de tempo no cálculo do coeficiente de descarga e razão de swirl. Adicionalmente, o campo de velocidades, pressão, energia cinética turbulenta e outros parâmetros são apresentados e analisados, com o objetivo de auxiliar no entendimento da dinâmica envolvida. Essencialmente, dois modelos de turbulência são empregados, juntamente com dois tratamentos de parede. Seus resultados também são confrontados e discutidos. A geometria considerada é de um motor Fiat 1.9 L quatro tempos com duas válvulas. A análise é concentrada em um único cilindro. O pacote computacional utilizado é o Star-cd, e seu aplicativo es-ice. A independência de malha foi obtida, chegando a 1.672.056 volumes. Os resultados são apresentados de duas formas. A primeira delas refere-se a resultados de simulações em regime permanente, realizadas em boa parte por outros autores, com ênfase na determinação do coeficiente de descarga e razão de swirl, estes confrontados com valores experimentais, visando à validação da metodologia. Fica evidente a importância da escolha do modelo de turbulência na simulação de motores de combustão interna, assim como das funções de interpolação utilizadas. Na segunda parte os resultados referem-se a uma análise transiente, considerando o movimento do pistão e válvulas, a 1500 RPM. Observa-se a grande exigência quanto ao passo de tempo requerido no transiente real, ficando demonstrado que para esta velocidade o menor passo de tempo utilizado, 0,05° (5.5555E-6 s), ainda é insuficiente para alguns momentos do ciclo. É possível notar maior influência no coeficiente de descarga do que na razão de swirl, em relação aos passos de tempo utilizados. A forte dependência do modelo de turbulência nos resultados obtidos é mais uma vez confirmada, conforme o esperado, já que as hipóteses sobre a física do fenômeno são diferentes em cada modelo. Os resultados quanto ao tratamento na parede não apresentaram significantes diferenças, quando aplicados junto ao modelo de turbulência k-ω SST. / Considering the increase in the availability of computers, there is a continuing trend toward the use of computational simulation aiding in the design of engineering equipments. Reasonable results, close to the real conditions, are obtained, including the simulation of internal combustion engines. In this way, the present work has the objective of analyzing the turbulent flow in the air intake process of an engine operating in Diesel cycle. The investigation focuses on the determination of the time step in the calculation of the air discharge coefficient and swirl ratio. Additionally, the turbulent kinetic energy, pressure and velocity fields, besides other parameters, are presented and analyzed, with the objective of aiding in the understanding of the involved dynamics. Essentially, two turbulence models are employed, together with two wall treatments. Their results are also confronted and discussed. The considered geometry is a four-stroke, 1.9-L FIAT engine, with two valves. The analysis is concentrated on a single cylinder. The software package used is the Star-cd, and its application es-ice. The mesh independence is carried out, arriving in 1.672.056 volumes. The results are presented in two ways. The first one refers to simulation results of the steady state, also accomplished by other authors, with emphasis in the determination of the discharge coefficient and swirl ratio. These data are confronted with experimental values, aiming to validate the applied methodology. The importance of the choice of the turbulent model becomes evident in the simulation of internal combustion engines, as well as the interpolation functions used. In the second part the results refer to a transient analysis, considering the valves and piston movement, at 1500 rpm. It is observed the great demand on time step required is observed for the real transient, demonstrating that, for this speed, the smallest time step used, 0.05º (5.5555E-6 s), is still insufficient for some moments of the cycle. Also regarding the time step, it is possible to notice a greater influence in the discharge coefficient than in the swirl ratio. The strong dependence of the turbulence model on the results is once again confirmed, as expected, since the hypotheses about the physics of the phenomenon are different in each model. The results, regarding the wall treatment, presented no significant differences, when applied together with the SST k-ω turbulence model.
|
12 |
CalibraÃÃo do Modelo de TurbulÃncia k-ω SST para Turbinas EÃlicas de Pequeno Porte AtravÃs de AvaliaÃÃo NumÃrica e Experimental / k-ω SST Turbulence Model Calibration for Small Scale Wind Turbines Through Numerical and Experimental ComparisonMarcos Paulo Gomes Fernandes 20 February 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / No presente trabalho foi realizada a investigaÃÃo numÃrica e experimental do desempenho aerodinÃmico de dois aerogeradores tripà de pequeno porte com 3 m de diÃmetro. Os perfis aerodinÃmicos utilizados, NACA 0012 (simÃtrico) e NACA 4412 (cambado), foram projetados para aplicaÃÃes em baixas velocidades, como à o caso de turbinas eÃlicas de eixo horizontal. Os aerogeradores foram construÃdos e testados no
LaboratÃrio de Energia Solar e GÃs Natural - UFC. Isto permitiu a determinaÃÃo das curvas de desempenho dos mesmos, possibilitando a comparaÃÃo posterior com os resultados da anÃlise numÃrica. A fim de calibrar o modelo de turbulÃncia k-ω SST para aplicaÃÃo em turbinas eÃlicas de pequeno porte, foram realizadas simulaÃÃes numÃricas utilizando o pacote de CFD OpenFOAM, versÃo 1.7.1. Os resultados numÃricos e
experimentais foram comparados, de tal forma que, a partir da variaÃÃo de parÃmetros como intensidade de turbulÃncia, comprimento caracterÃstico turbulento e β* (constante
de calibraÃÃo do modelo), pode-se concluir que os resultados numÃricos foram pouco sensÃveis aos dois primeiros parÃmetros, enquanto a variaÃÃo de β* impactou de forma significativa os resultados numÃricos. A mudanÃa do aerofÃlio nÃo alterou o valor de β* que melhor ajustou o resultado. Isto, alÃm do sucesso do processo de calibraÃÃo, indica que a cambagem nÃo influenciou na calibraÃÃo do modelo de turbulÃncia, o que à muito positivo, pois permite uma avaliaÃÃo de cenÃrios diferentes, tal como pÃs projetadas com outros perfis aerodinÃmicos. / In this work it was performed a numerical and experimental investigation of the aerodynamic performance of two small three-bladed wind turbines with diameter of 3m. The airfoils used, NACA 0012 (symmetrical) e NACA 4412 (unsymmetrical), were designed for low speed applications, such as the horizontal axis wind turbines. The wind
turbines were built and tested at the Solar Energy and Natural Gas Laboratory âUFC. This allowed the attainment of the performance curves, enabling the comparison between the results of the numerical analysis. In order to calibrate the turbulence model k-ω SST to applications in small wind turbines, it was performed numerical simulations using the open source package for CFD solutions OpenFOAM, version 1.7.1. The numerical and experimental results were compared, in a way that, from the variation of parameters such as turbulence intensity, characteristic length and β* (calibration constant), it can be concluded that the numerical results were little sensitive to the first
two parameters, while the variation of β* impacted significantly the numerical results. The change of airfoil did not modify the value of β* that best adjusted the result. This, beyond the success of the calibration process, indicates that the camber did not affect
the calibration of the turbulence model, which is very positive because it allows an evaluation of different scenarios, such as blades designed with other airfoils.
|
13 |
NUMERICAL ANALYSIS OF TURBULENT GAS-SOLID FLOWS IN A VERTICAL PIPE USING THE EULERIAN TWO-FLUID MODEL2013 January 1900 (has links)
Turbulent gas-solid flows are readily encountered in many industrial and environmental processes. The development of a generic modeling technique for gas-solid turbulent flows remains a significant challenge in the field of mechanical engineering. Eulerian models are typically used to model large systems of particles. In this dissertation, a numerical analysis was carried out to assess a current state-of-the-art Eulerian two-fluid model for fully-developed turbulent gas-solid upward flow in a vertical pipe. The two-fluid formulation of Bolio et al. (1995) was adopted for the current study and the drag force was considered as the dominant interfacial force between the solids and fluid phase. In the first part of the thesis, a two-equation low Reynolds number k-ε model was used to predict the fluctuating velocities of the gas-phase which uses an eddy viscosity model. The stresses developed in the solids-phase were modeled using kinetic theory and the concept of granular temperature was used for the prediction of the solids velocity fluctuation.
The fluctuating drag, i.e., turbulence modulation term in the transport equation of the turbulence kinetic energy and granular temperature was used to capture the effect of the presence of the dispersed solid particles on the gas-phase turbulence. The current study documents the performance of two popular turbulence modulation models of Crowe (2000) and Rao et al. (2011). Both models were capable of predicting the mean velocities of both the phases which were generally in good agreement with the experimental data. However, the phenomena that small particles cause turbulence suppression and large particles cause turbulence enhancement was better captured by the model of Rao et al. (2011); conversely, the model of Crowe (2000) produced turbulence enhancement in all cases. Rao et al. (2011) used a modified wake model originally proposed by Lun (2000) which is activated when the particle Reynolds number reaches 150. This enables the overall model to produce turbulence suppression and augmentation that follows the experimental trend.
The granular temperature predictions of both models show good agreement with the limited experimental data of Jones (2001). The model of Rao et al. (2011) was also able to capture the effect of gas-phase turbulence on the solids velocity fluctuation for three-way coupled systems. However, the prediction of the solids volume fraction which depends on the value of the granular temperature shows noticeable deviations with the experimental data of Sheen et al. (1993) in the near-wall region. Both turbulence modulation models predict a flat profile for the solids volume fraction whereas the measurements of Sheen et al. (1993) show a significant decrease near the wall and even a particle-free region for flows with large particles.
The two-fluid model typically uses a low Reynolds number k-ε model to capture the near-wall behavior of a turbulent gas-solid flow. An alternative near-wall turbulence model, i.e., the two-layer model of Durbin et al. (2001) was also implemented and its performance was assessed. The two-layer model is especially attractive because of its ability to include the effect of surface roughness. The current study compares the predictions of the two-layer model for both clear gas and gas-solid flows to the results of a conventional low Reynolds number model. The effects of surface roughness on the turbulence kinetic energy and granular temperature were also documented for gas-particle flows in both smooth and rough pipes.
|
14 |
Experimental and Numerical Study of Molecular Mixing Dynamics in Rayleigh- Taylor Unstable FlowsMueschke, Nicholas J. 16 January 2010 (has links)
Experiments and simulations were performed to examine the complex processes that
occur in Rayleigh�Taylor driven mixing. A water channel facility was used to examine
a buoyancy-driven Rayleigh�Taylor mixing layer. Measurements of �uctuating den-
sity statistics and the molecular mixing parameter were made for Pr = 7 (hot/cold
water) and Sc 103 (salt/fresh water) cases. For the hot/cold water case, a high-
resolution thermocouple was used to measure instantaneous temperature values that
were related to the density �eld via an equation of state. For the Sc 103 case, the
degree of molecular mixing was measured by monitoring a di�usion-limited chemical
reaction between the two �uid streams. The degree of molecular mixing was quanti-
�ed by developing a new mathematical relationship between the amount of chemical
product formed and the density variance 02. Comparisons between the Sc = 7 and
Sc 103 cases are used to elucidate the dependence of on the Schmidt number.
To further examine the turbulent mixing processes, a direct numerical simu-
lation (DNS) model of the Sc = 7 water channel experiment was constructed to
provide statistics that could not be experimentally measured. To determine the key
physical mechanisms that in�uence the growth of turbulent Rayleigh�Taylor mixing
layers, the budgets of the exact mean mass fraction em1, turbulent kinetic energy fE00,
turbulent kinetic energy dissipation rate e 00, mass fraction variance gm002
1 , and mass
fraction variance dissipation rate f 00 equations were examined. The budgets of the unclosed turbulent transport equations were used to quantitatively assess the relative
magnitudes of di�erent production, dissipation, transport, and mixing processes.
Finally, three-equation (fE00-e 00-gm002
1 ) and four-equation (fE00-e 00-gm002
1 -f 00) turbulent
mixing models were developed and calibrated to predict the degree of molecular mix-
ing within a Rayleigh�Taylor mixing layer. The DNS data sets were used to assess
the validity of and calibrate the turbulent viscosity, gradient-di�usion, and scale-
similarity closures a priori. The modeled transport equations were implemented in a
one-dimensional numerical simulation code and were shown to accurately reproduce
the experimental and DNS results a posteriori. The calibrated model parameters
from the Sc = 7 case were used as the starting point for determining the appropri-
ate model constants for the mass fraction variance gm002
1 transport equation for the
Sc 103 case.
|
15 |
A Three Dimensional Numerical Modeling of a Rotary Kiln Incinerator and On-Site MeasurementHSU, WEI-DI 14 July 2000 (has links)
Finite volume method was employed for analyzing the three-dimensional turbulent flow structures, species distributions, and mixing behaviors of combustion flows in a rotary kiln under various operation conditions. The modified £e-£`turbulence model together with wall functions was adopted. Devolatilization of solid wastes were simulated by gaseous methane (CH4) non-uniformly distributed along the kiln bed. Combustion process was considered as a two-step reaction when primary air entered and mixed with methane gas in the first combustion chamber. Mixing-controlled eddy-dissipation model was employed for predicting the reaction rates of CH4, O2, CO2, CO and H2O. Effects of inleakage air, kiln rotation speed and methane distribution along the kiln bed were also examined.
Results show that 128% excess air will get the best combustion efficiency, above which the combustion efficiency will decrease. The temperature and species are not uniformly distributed and are vertically stratified on cross-sectional plane. The combustion efficiency will also be lowered if there is inleakage airflow.
Results also show rotation speed and methane distributions have little effect on combustion efficiency.
|
16 |
Examining individual and joint sense-making in stressful relational narrativesLeFebvre, Leah Elina 02 July 2014 (has links)
This dissertation examined individual and joint storytelling as a communicative process to explore relational turbulence about stressful events. Response to change in romantic relationships inherently involves a degree of instability as individuals alter their thoughts and actions. The instability and chaos that results when transitions impact interpersonal relationships is relational turbulence (e.g., Knobloch & Solomon, 2004). The theoretical focus is the relational turbulence model (RTM) that serves to illustrate the ambiguity and complexity embedded in relationship experiences and the negotiation of behavior. Examination of stories showcased the representational relational state (i.e., uncertainty) and cognitive activities (i.e., partner interdependence) present in the relationship. First, the dissertation further positioned the influence turbulence has on individual and relational communication to negotiate discomfort, negative emotions, and difficulties that ensued during transitions. Second, this study examined expressions individuals chose to highlight, through storytelling, that apply to relational turbulence mechanisms: relational uncertainty and interdependence. Third, this dissertation examined identity development and/or fluctuation as a byproduct of turbulence exhibited through stories exploring another potential relational turbulence mechanism. A review of literature discussed the theoretical framework for the relational turbulence model and storytelling content and structure. The exploration of stories and storytelling was reviewed as a means for investigating RTM, followed by analysis procedures outlining individual and relational storytelling processes. Results revealed 14 transitional events categories and 23 subcategories. Additionally, qualitative themes and subthemes that emerged for relational uncertainty, partner interdependence, individual and relational identity. Results for relational uncertainty triangulated previous scholarship while also identified two new themes. Partner interdependence results indicated more specificity in forms of partner interference and facilitation. Identity emerged as a third mechanism and preliminary investigation found static and dynamic forms. Quantitative results analyzed significant correlations and comparisons between narrative completeness in individuals' and relational partners' storytelling experiences. The dissertation highlighted how relational turbulence influenced the storytelling content and structure of individual and joint stories. / text
|
17 |
LAMINAR-TURBULENT TRANSITION FOR ATTACHED AND SEPARATED FLOWZhang, Qian 01 January 2010 (has links)
A major challenge in the design of turbomachinery components for aircraft gas turbine engines is high cycle fatigue failures due to flutter. Of particular concern is the subsonic/transonic stall flutter boundary which occurs at part speed near the stall line. At these operating conditions the incidence angle is large and the relative Mach number is high subsonic or transonic. Viscous effects dominate for high incidence angles.
In order to predict the flutter phenomena, accurate calculation of the steady and unsteady aerodynamic loading on the turbomachinery airfoils is necessary. The development of unsteady aerodynamic models to predict the unsteady forces and moments acting on turbomachine airfoils is an area of fundamental research interest. Unsteady Reynolds Averaged Navier-Stokes (RANS) models have been developed to accurately account for viscous effects. For these Reynolds averaged equations turbulence models are needed for the Reynolds stress terms. A transition model is also necessary. The transition onset location is determined by a transition onset model or specified at the suction peak. Usually algebraic, one or two-equation or Reynolds stress turbulence models are used. Since the Reynolds numbers in turbomachinery are large enough to guarantee the flow is turbulent, suitable transition and turbulence models are crucial for accurate prediction of steady and unsteady separated flow.
The viscous flow solution of compressor airfoils at off-design conditions is challenging due to flow separation and transition to turbulent flow within separation bubbles. Additional complexity arises when the airfoils are vibrating as is encountered in stall flutter. In this investigation calculations are made of a transonic compressor airfoil in steady flow and with the airfoils oscillating in a pitching motion about the mid-chord at 0° and 10° of chordal incidence angle, and correlated with experiments conducted in the NASA GRC Transonic Flutter Cascade. To model the influence of flow transition on the steady and unsteady aerodynamic flow characteristics, the Solomon, Walker, and Gostelow (SWG) transition model is utilized. The one-equation Spalart-Allmaras model is used to model turbulence. Different transition onset models including fixed onset are implemented and compared for the two incidence angle cases. At each incidence angle, the computational model is compared to the experimental data for the steady flow case and also for pitching oscillation at a reduced frequency of 0.4. The 10° incidence angle case has flow separation over front 40% of the airfoil chord. The operating conditions considered are an inlet Mach number of 0.5 and a Reynolds number of 0.9 Million.
|
18 |
IMPLEMENTATION AND VALIDATION OF THE HYBRID TURBULENCE MODELS IN AN UNSTRUCTURED GRID CODEPanguluri, Sri S. 01 January 2007 (has links)
Since its introduction in 1997, the use of Detached Eddy Simulation (DES) and similar hybrid turbulence techniques has become increasingly popular in the field of CFD. However, with increased use some of the limitations of the DES model have become apparent. One of these is the dependence of DES on grid construction, particularly regarding the point of transition between the Reynolds-Averaged Navier-Stokes and Large Eddy Simulation models. An additional issue that arises with unstructured grids is the definition of the grid spacing in the implementation of a DES length scale. To lay the ground work to study these effects the Spalart-Allmaras one-equation turbulence model, SA based DES hybrid turbulence model, and the Scale Adaptive Simulation hybrid turbulence model are implemented in an unstructured grid CFD code, UNCLE. The implemented SA based DES model is validated for flow over a three-dimensional circular cylinder for three different turbulent Reynolds numbers. Validation included studying the pressure, skin friction coefficient, centerline velocity distributions averaged in time and space. Tools to output the mean velocity profiles and Reynolds stresses were developed. A grid generation code was written to generate a two/three dimensional circular cylinder grid to simulate flow over the cylinder in UNCLE. The models implemented and validated, and the additional tools mentioned will be used in the future.
|
19 |
Řešení inverzní úlohy obtékání leteckého profilu / Solution of inverse problem for a flow around an airfoilŠimák, Jan January 2014 (has links)
Title: Solution of inverse problem for a flow around an airfoil Author: Mgr. Jan Šimák Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Miloslav Feistauer, DrSc., dr. h. c., Department of Numerical Mathematics Abstract: The method described in this thesis deals with a solution of an inverse problem for a flow around an airfoil. It can be used to design an airfoil shape according to a specified velocity or pressure distribution along the chord line. The method is based on searching for a fixed point of an operator, which combines an approximate inverse and direct operator. The approximate inverse operator, derived on the basis of the thin airfoil theory, assigns a corresponding shape to the specified distribution. The resulting shape is then constructed using the mean camber line and thickness function. The direct operator determines the pressure or velocity distribution on the airfoil surface. We can apply a fast, simplified model of potential flow solved using the Fredholm integral equation, or a slower but more accurate model of RANS equations with a k-omega turbulence model. The method is intended for a subsonic flow.
|
20 |
Simulação numérica do escoamento turbulento em motores de combustão internaZancanaro Junior, Flavio Vanderlei January 2010 (has links)
Com os grandes avanços ocorridos na disponibilização de computadores, existe uma tendência contínua para a utilização de técnicas computacionais auxiliando no projeto de equipamentos de engenharia. Cada vez mais estão se obtendo resultados bastante próximos às condições reais, incluindo a simulação de motores de combustão interna. Neste sentido o presente trabalho tem o objetivo de analisar o escoamento turbulento no processo de admissão de ar em um motor operando em ciclo Diesel. A investigação é focada na determinação da influência do passo de tempo no cálculo do coeficiente de descarga e razão de swirl. Adicionalmente, o campo de velocidades, pressão, energia cinética turbulenta e outros parâmetros são apresentados e analisados, com o objetivo de auxiliar no entendimento da dinâmica envolvida. Essencialmente, dois modelos de turbulência são empregados, juntamente com dois tratamentos de parede. Seus resultados também são confrontados e discutidos. A geometria considerada é de um motor Fiat 1.9 L quatro tempos com duas válvulas. A análise é concentrada em um único cilindro. O pacote computacional utilizado é o Star-cd, e seu aplicativo es-ice. A independência de malha foi obtida, chegando a 1.672.056 volumes. Os resultados são apresentados de duas formas. A primeira delas refere-se a resultados de simulações em regime permanente, realizadas em boa parte por outros autores, com ênfase na determinação do coeficiente de descarga e razão de swirl, estes confrontados com valores experimentais, visando à validação da metodologia. Fica evidente a importância da escolha do modelo de turbulência na simulação de motores de combustão interna, assim como das funções de interpolação utilizadas. Na segunda parte os resultados referem-se a uma análise transiente, considerando o movimento do pistão e válvulas, a 1500 RPM. Observa-se a grande exigência quanto ao passo de tempo requerido no transiente real, ficando demonstrado que para esta velocidade o menor passo de tempo utilizado, 0,05° (5.5555E-6 s), ainda é insuficiente para alguns momentos do ciclo. É possível notar maior influência no coeficiente de descarga do que na razão de swirl, em relação aos passos de tempo utilizados. A forte dependência do modelo de turbulência nos resultados obtidos é mais uma vez confirmada, conforme o esperado, já que as hipóteses sobre a física do fenômeno são diferentes em cada modelo. Os resultados quanto ao tratamento na parede não apresentaram significantes diferenças, quando aplicados junto ao modelo de turbulência k-ω SST. / Considering the increase in the availability of computers, there is a continuing trend toward the use of computational simulation aiding in the design of engineering equipments. Reasonable results, close to the real conditions, are obtained, including the simulation of internal combustion engines. In this way, the present work has the objective of analyzing the turbulent flow in the air intake process of an engine operating in Diesel cycle. The investigation focuses on the determination of the time step in the calculation of the air discharge coefficient and swirl ratio. Additionally, the turbulent kinetic energy, pressure and velocity fields, besides other parameters, are presented and analyzed, with the objective of aiding in the understanding of the involved dynamics. Essentially, two turbulence models are employed, together with two wall treatments. Their results are also confronted and discussed. The considered geometry is a four-stroke, 1.9-L FIAT engine, with two valves. The analysis is concentrated on a single cylinder. The software package used is the Star-cd, and its application es-ice. The mesh independence is carried out, arriving in 1.672.056 volumes. The results are presented in two ways. The first one refers to simulation results of the steady state, also accomplished by other authors, with emphasis in the determination of the discharge coefficient and swirl ratio. These data are confronted with experimental values, aiming to validate the applied methodology. The importance of the choice of the turbulent model becomes evident in the simulation of internal combustion engines, as well as the interpolation functions used. In the second part the results refer to a transient analysis, considering the valves and piston movement, at 1500 rpm. It is observed the great demand on time step required is observed for the real transient, demonstrating that, for this speed, the smallest time step used, 0.05º (5.5555E-6 s), is still insufficient for some moments of the cycle. Also regarding the time step, it is possible to notice a greater influence in the discharge coefficient than in the swirl ratio. The strong dependence of the turbulence model on the results is once again confirmed, as expected, since the hypotheses about the physics of the phenomenon are different in each model. The results, regarding the wall treatment, presented no significant differences, when applied together with the SST k-ω turbulence model.
|
Page generated in 0.337 seconds