• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 22
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 77
  • 77
  • 34
  • 34
  • 29
  • 28
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation de la formation des polluants au sein des foyers aéronautiques par une méthode de chimie tabulée / Modelling of pollutant species formation in aeronautical combustors using a tabulated chemistry method

Boucher, Aymeric 14 January 2015 (has links)
La réduction des émissions polluantes des foyers aéronautiques est un enjeu majeur pour les motoristes. Afin de les accompagner dans cette tâche, il est nécessaire de développer des outils de simulation numérique permettant de prédire avec précision les émissions d'espèces chimiques en sortie du foyer. Pour cela, une description détaillée des réactions chimiques est nécessaire. Celle-ci est néanmoins incompatible avec la simulation des foyers industriels, compte tenu des puissances de calcul actuelles. C'est pourquoi il est nécessaire de recourir à des méthodes de réduction de la chimie qui préservent la capacité de prédire la concentration des polluants. La démarche consistant à tabuler la chimie nous a semblé appropriée pour aborder ces problèmes et son développement a fait l'objet de cette thèse. Un premier travail a été effectué afin de sélectionner dans la littérature les modèles permettant de traiter des écoulements réactifs turbulents diphasiques avec une approche de chimie tabulée. Par rapport à l’existant, des améliorations ont été apportées à la génération des tables chimiques, afin de prendre en compte l'effet du temps de résidence des gaz brûlés dans le foyer sur la formation des oxydes d'azote. Le couplage de la méthode avec un modèle de formation des suies a également été réalisé. La chimie tabulée permet d’avoir accès à la concentration des précurseurs de suie et des espèces oxydantes, quantités sur lesquelles s’appuie le modèle de formation des suies. Le modèle de chimie tabulée développé dans le cadre de cette thèse a été appliqué à la simulation d'une configuration représentative des foyers aéronautiques. Les concentrations d'oxydes d'azote, de particules de suie, mais aussi de monoxyde de carbone et d'hydrocarbures imbrûlés prédites par les calculs ont été comparées aux résultats expérimentaux. Un bon accord avec l'expérience est observé concernant la topologie du champ de suie et l'allure des profils de concentration de polluants en sortie. Néanmoins, les niveaux de concentration obtenus par les simulations diffèrent des résultats expérimentaux. Cela est imputable notamment à une erreur de prédiction du champ de température qui n'est pas due à l'approche de chimie-tabulée puisque une erreur similaire a été observée avec un autre modèle de combustion. / The reduction of pollutant emissions of aeronautical combustion chambers is a major issue for engine manufacturers. In order to support them in this task, it is necessary to develop numerical simulation tools able to predict accurately chemical species emissions at the chamber outlet. To achieve this, a detailed description of the chemical reactions is necessary. Nevertheless, considering the current computer capabilities, this description is not presently affordable. This is why the use of chemistry reduction methods preserving the capability to predict pollutants species is necessary. The method of tabulated chemistry is a good candidate to tackle these problems and therefore is used as the basis of model developments achieved in the framework of this PhD thesis. A preliminary work has been made to select in the literature tabulated chemistry methods applying to turbulent reactive two-phase flows. The technique to create the chemical tables has been improved in order to take into account the effect of the residence time of the burnt gases on nitrogen oxides formation. The coupling of the method with a soot model has also been achieved. The tabulated chemistry gives access to the concentration of soot precursors and oxidizers, quantities which are required by the model used for the soot prediction. The developed tabulated chemistry model has been applied to the simulation of a configuration representative of aeronautical combustors. The concentration of nitrogen oxides, soot particles, carbon monoxide and unburnt hydrocarbons predicted by the numerical simulations have been compared to experimental results. The topology of the soot volume fraction field and the shape of pollutant concentrations profiles at the outlet agree quite well with the experiments. Nevertheless, concentration levels obtained from the simulations differ from the experimental results. This can be imputed to the error in the prediction of the temperature field that is independent of the combustion model, since a similar error was observed with another combustion model.
32

Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés / Advanced modeling of two phase turbulent combustion with strong dilution by burnt gases

Enjalbert, Nicolas 16 December 2011 (has links)
Afin de contribuer à l'amélioration des simulations numériques de foyers industriels avec recycle de gaz brûlés et combustible liquide, la modélisation de la combustion turbulente non prémélangée est abordée sous deux de ses aspects : le traitement des problèmes diphasiques et la prise en compte des configurations complexes de mélange (dilution, recirculation interne).Une flamme spray éthanol/oxygène diluée par du dioxyde de carbone est d'abord calculée en LES dans un formalisme Euler-Lagrange et une chimie détaillée pour une résolution atteignant 250 µm. Les conditions d'injection du brouillard de gouttes sont déterminées à partir de mesures expérimentales de granulométrie et d'anémométrie phase Doppler.Dans une seconde partie, un nouveau formalisme de description de la combustion turbulente, basé sur l'introduction de temps caractéristiques de l'histoire du mélange est développé, puis validé en LES sur le cas de référence d'une flamme jet dans un écoulement co-courant vicié. / As a contribution to the improvement of numerical simulations of industrial furnaces with flue gas recirculation and liquid fuel, two aspects of the non-premixed turbulent combustion modeling are addressed: the handling of two-phase problems and the treatment of complex mixing configuration, such as dilution and internal recirculation. An ethanol/oxygen spray flame is first solved in an LES, following an Euler-Lagrange formalism, with detailed chemistry and at a resolution reaching 250 µm. The spray injection conditions are determined from granulometry and Doppler-phase anemometry measurements. In a second part, a novel formalism to describe turbulent combustion is developed, based on the introduction of characteristic timescales of the mixing history. It is then validated on the reference case of a jet flame in a vitiated co-flow.
33

An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion / Une approche automatisée pour la réduction et l'optimisation de schémas cinétiques appliqués à la combustion turbulente

Jaouen, Nicolas 21 March 2017 (has links)
La complexité de la chimie joue un rôle majeur dans la simulation numérique de la plupart des écoulements réactifs industriels. L'utilisation de schémas cinétiques chimiques détaillés avec les outils de simulation actuels reste toutefois trop coûteuse du fait des faibles pas de temps et d'espaces associés à la résolution d'une flamme, bien souvent inférieurs de plusieurs ordres de grandeur à ceux nécessaires pour capturer les effets de la turbulence. Une solution est proposée pour s'affranchir de cette limite. Un outil automatisé de réduction de schémas cinétiques est développé sur la base d'un ensemble de trajectoires de références construites dans l'espace des compositions pour être représentatives du système à simuler. Ces trajectoires sont calculées à partir de l'évolution de particules stochastiques soumises à différentes conditions de mélange, de réaction et d'évaporation dans le cas de combustible liquide. L'ensemble est couplé à un algorithme génétique pour l'optimisation des taux de réaction du schéma réduit, permettant ainsi une forte réduction du coût calcul. L'approche a été validée et utilisée pour la réduction de divers mécanismes réactionnels sur des applications académiques et industrielles, pour des hydrocarbures simples comme le méthane jusqu'à des hydrocarbures plus complexes, comme le kérosène en incluant une étape optimisée de regroupement des isomères. / Complex chemistry is an essential ingredient in advanced numerical simulation of combustion systems. However, introducing detailed chemistry in Computational Fluid Dynamics (CFD) softwares is a non trivial task since the time and space resolutions necessary to capture and solve for a flame are very often smaller than the turbulent characteristic scales by several orders of magnitude. A solution based on the reduction of chemical mechanisms is proposed to tackle this issue. An automated reduction and optimisation strategy is suggested relying on the construction of reference trajectories computed with the evolution of stochastic particles that face mixing, evaporation and chemical reactions. The methodology, which offers strong reduction in CPU cost, is applied to the derivation of several mechanisms for canonical and industrial applications, for simple fuel such as methane up to more complex hydrocarbon fuels, as kerosene, including an optimised lumping procedure for isomers.
34

Large Eddy Simulation of Nanosecond Repetitively Pulsed Plasma Discharge Effects on Swirl-Stabilized Turbulent Combustion

Joshua A Strafaccia (11192097) 28 July 2021 (has links)
An atmospheric pressure swirl-stabilized methane-air burner has been developed as a test platform for nanosecond repetitively pulsed (NRP) discharge plasma-assisted combustion research. Qualitative flame and plasma discharge characterizations were conducted with high-speed video and low-light ICCD imagery, along with a modal acoustic analysis of the entire assembly. A large eddy simulation (LES) of the burner was created using the commercial solver Ansys Fluent to investigate the plasma effects on swirl-stabilized turbulent combustion. A modified version of the solver's premixed combustion mechanism is presented along with a phenomenological plasma discharge model to simulate plasma-assisted combustion. Cold flow particle image velocimetry (PIV) data were collected to validate the non-reacting flow field and assess non-reacting NRP discharge effects. Optical emission spectroscopy (OES) measurements of the second positive system (SPS) of nitrogen mapped temperature characteristics of NRP discharge bursts for comparison to time-resolved simulation data. Finally, time-averaged CH* chemiluminescence data were collected to qualitatively assess the effects of plasma on the experimental burner and simulated flame structure. Overall, the phenomenologically-based combustion mechanism proposed in this work shows good agreement with several experimental observations and provides a promising framework for future plasma-assisted combustion modeling.
35

REPRESENTATION OF DIFFERENTIAL MOLECULAR DIFFUSION BY USING LAMINAR FLAMELET AND MODELING OF POOL FIRE BY USING TRANSPORTED PDF METHOD

Tianfang Xie (13171122) 28 July 2022 (has links)
<p><br></p> <p>A  combustion simulation involves various physiochemical processes, such as molecular and turbulent diffusion, smoke and soot formation, thermal radiation, chemical reaction mechanisms, and kinetics. In the last decade, computational fluid dynamics (CFD) has been increasingly used in combustion modeling. It is critically important to improve and enhance the predictive capabilities of combustion models. This work presents an analysis of two types of diffusion flames: the momentum-dominant jet flames and buoyancy-controlled pool fires. The gap between the existing knowledge of differential molecular diffusion in turbulent high momentum jet flow and the practical applications has been reduced. The importance of mixing modeling in pool fire simulations has been revealed, and enhancement for predicting fire extinction limits has been proposed.</p> <p><br></p> <p>Modeling differential molecular diffusion in turbulent non-premixed combustion remains a great challenge for flamelet models. The laminar flamelet is a key component of a flamelet model for turbulent combustion. One significant challenge that has not been well addressed is the representativity of laminar flamelet for the characteristics of differential molecular diffusion in turbulent combustion problems. Laminar flamelet is generated typically based on two conceptual burner configurations, the opposed jet burner, and the Tsuji burner. They are commonly considered equivalent when dealing with the description of laminar flamelet structures. A difference between them is revealed in this work for the first time when they are used to represent differential molecular diffusion. The traditionally opposed jet burner yields an almost fixed equal diffusion location in the mixture fraction space for the transport of different elements. The Tsuji burner can produce a continuous variation of the equal diffusion location in the mixture fraction space with a slight extension. This variation of the equal diffusion location is shown to be an essential characteristic of turbulent non-premixed combustion, as demonstrated in a laminar jet mixing layer problem, a turbulent jet mixing layer problem, and a turbulent jet non-premixed flame. The Tsuji burner is thus potentially a more suitable choice than the opposed jet burner for laminar flamelet generation that can be consequently used in flamelet modeling of differential molecular diffusion for turbulent non-premixed combustion.</p> <p><br></p> <p>Capturing fire extinction limits in simulations is essential for developing predictive capabilities for fire. In this work, the combined large-eddy simulation (LES) and transported probability density function (PDF) methods are assessed for the predictions of fire extinction. The University of Maryland line burner is adopted as a validation test case. The NIST Fire Dynamics Simulator (FDS) code for LES is combined with an in-house PDF code called HPDF for the fire simulations. The simulation results were verified by using the available experimental data. The combustion efficiency under the different oxygen depletion levels in the oxidizer is analyzed. Fire extinction occurs when the oxygen depletion level reduces to a certain level. The model’s capability to capture this extinction limit is assessed by using the experimental data. Different mixing models and model parameters are examined. It is found that the fire extinction limit is very sensitive to the different mixing models and mixing parameters. The level of sensitivity is higher than in momentum-driven turbulent flames, which suggests the importance of mixing modeling in fire simulations. The existing mixing models need further enhancement for predicting fire extinction. </p> <p><br></p>
36

Turbulent Jet Diffusion Flame : Studies On Lliftoff, Stabilization And Autoignition

Patwardhan, Saurabh Sudhir 07 1900 (has links)
This thesis is concerned with investigations on two related issues of turbulent jet diffusion flame, namely (a) stabilization at liftoff and (b) autoignition in a turbulent jet diffusion flame. The approach of Conditional Moment Closure (CMC) has been taken. Fully elliptic first order CMC equations are solved with detailed chemistry to simulate lifted H2/N2 flame in vitiated coflow. The same approach is further used to simulate transient autoignition process in inhomogeneous mixing layers. In Chapter 1, difficulties involved in numerical simulation of turbulent combustion problems are explained. Different numerical tools used to simulate turbulent combustion are briefly discussed. Previous experimental, theoretical and numerical studies of lifted jet diffusion flames and autoignition are reviewed. Various research issues related to objectives of the thesis are discussed. In Chapter 2, the first order CMC transport equations for the reacting flows are presented. Various closure models that are required for solving the governing equations are given. Calculation of mean reaction rate term for detailed chemistry is given with special focus on the reaction rates for pressure dependent reactions. In Chapter 3, starting with the laminar flow code, further extension is carried to include kε turbulence model and PDF model. The code is validated at each stage of inclusion of different model. In this chapter, the code is first validated for the test problem of constant density, 2D, axisymmetric turbulent jet. Further, validation of PDF model is carried out by simulating the problem of nonreacting jet of cold air issuing into a vitiated coflow. The results are compared with the published data from experiments as well as numerical simulations. It is shown that the results compare well with the data. In Chapter 4, numerical results of lifted jet diffusion flame are presented. Detailed chemistry is modelled using Mueller mechanism for H2/O2 system with 9 species and 21 reversible reactions. Simulations are carried out for different jet velocities and coflow stream temperatures. The predicted liftoff generally agrees with experimental data, as well as joint PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for different coflow temperatures reveal that (1) Inside the flamezone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the preflame zone, the structure depends on the coflow temperature: for low coflow temperatures, the chemical term being small, the advective term balances the axial diffusion term. However, for the high coflow temperature case, the chemical term is large and balances the advective term, the axial diffusion term being small. It is concluded that, liftoff is controlled (a) by turbulent premixed flame propagation for low cofflow temperature while (b) by autoignition for high coflow temperature. In Chapter 5, the numerical results of autoignition in inhomogeneous mixing layer are presented. The configuration consists of a fuel jet issued into hot air for which transient simulations are performed. It is found that the constants assumed in various modelling terms can severely influence the results, particularly the flame temperature. Hence, modifications to these constants are suggested to obtain improved predictions. Preliminary work is carried out to predict autoignition lengths (which may be defined by Tign × Ujet incase of jet- and coflowvelocities being equal) by varying the coflow temperature. The autoignition lengths show a reasonable agreement with the experimental data and LES results. In Chapter 6, main conclusions of this thesis are summarized. Possible future studies on this problem are suggested.
37

Modélisation et simulation de l'émission énergétique et spectrale d'un jet réactif composé de gaz et de particules à haute température issus de la combustion d'un objet pyrotechnique

Caliot, Cyril 31 March 2006 (has links) (PDF)
Les travaux réalisés durant la thèse s'inscrivent dans une problématique scientifique liée à l'étude des transferts radiatifs. Plus particulièrement, l'application de cette étude est la télédétection infrarouge d'un écoulement diphasique réactif et turbulent à haute température. Cette étude a pour objectif la modélisation et la simulation du rayonnement infrarouge émis par cet écoulement et re¸cu par un détecteur. Pour développer un outil de simulation numérique de la signature infrarouge d'un jet de gaz et de particules à haute température, les espèces majoritaires qui sont responsables de l'émission du rayonnement ont été identifiées lors d'expérimentations. Les campagnes expérimentales ont permis la construction de bases de données concernant les gaz (CO2-CO-H2O) et les particules (oxydes métalliques) présents dans le jet. Connaissant la nature des gaz et des particules, le calcul de leurs propriétés radiatives doit être réalisé. Cette étape est nécessaire puisque ces propriétés caractérisent l'émission de rayonnement par le jet et elles doivent être connues pour résoudre l'équation de transfert radiatif. Pour les gaz, un code de calcul raie par raie de spectres synthétiques a été développé. De plus, pour diminuer le temps de calcul d'une signature infrarouge, il est préférable d'utiliser des modèles spectraux de bandes étroites. Le modèle de télédétection infrarouge est un modèle spectral utilisant des k(coefficient d'absorption)-distributions sous l'hypothèse des k-corrélés avec l'approximation d'un gaz unique pour le mélange associée à l'hypothèse des gaz fictifs. Les paramètres de ce modèle (CKFG-SMG), ont été tabulés et validés dans l'étude. En ce qui concerne les propriétés radiatives des nuages de particules sphériques, le modèle de Mie est utilisé car il est valable pour les gammes de fractions volumiques rencontrées. Pour tester l'influence de la diffusion, une étude de sensibilité à la diffusion a été réalisée. En effet, nous avons quantifié l'erreur commise sur le flux émis par différentes couches si les processus de diffusion du rayonnement sont négligés. Cette étude a montré que l'influence de la diffusion peut être négligée dans le cadre de notre étude. La modélisation de la signature infrarouge du jet diphasique réactif issu de la combustion du matériau pyrotechnique, nécessite la connaissance des températures et des concentrations en gaz et particules, en tous les points du jet. Ce jet diphasique réactif a été simulé à l'aide du logiciel Fluent. De plus, une interface graphique a été développée qui recrée la scène optronique en se servant des profils aérothermochimiques du jet diphasique et des données concernant la position du détecteur. De cette fa¸con, un outil de simulation numérique de la signature infrarouge du jet (SIRJET) a été développé qui inclue un modèle de transfert radiatif (lancer de rayon) ainsi que les paramètres tabulés (gaz et particules) du modèle spectral de télédétection infrarouge (CK, CKFG, CK-SMG, CKFG-SMG). Enfin, une confrontation est présentée entre une mesure et le résultat d'une simulation de la signature infrarouge d'un jet diphasique à haute température.
38

Experimental Investigation of the Dynamics and Structure of Lean-premixed Turbulent Combustion

Yuen, Frank Tat Cheong 03 March 2010 (has links)
Turbulent premixed propane/air and methane/air flames were studied using planar Rayleigh scattering and particle image velocimetry on a stabilized Bunsen type burner. The fuel-air equivalence ratio was varied from Φ=0.7 to 1.0 for propane flames, and from Φ=0.6 to 1.0 for methane flames. The non-dimensional turbulence intensity, u'/SL (ratio of fluctuation velocity to laminar burning velocity), covered the range from 3 to 24, equivalent to conditions of corrugated flamelets and thin reaction zones regimes. Temperature gradients decreased with the increasing u'/SL and levelled off beyond u'/SL > 10 for both propane and methane flames. Flame front thickness increased slightly as u'/SL increased for both mixtures, although the thickness increase was more noticeable for propane flames, which meant the thermal flame front structure was being thickened. A zone of higher temperature was observed on the average temperature profile in the preheat zone of the flame front as well as some instantaneous temperature profiles at the highest u'/SL. Curvature probability density functions were similar to the Gaussian distribution at all u'/SL for both mixtures and for all the flame sections. The mean curvature values decreased as a function of u'/SL and approached zero. Flame front thickness was smaller when evaluated at flame front locations with zero curvature than that with curvature. Temperature gradients and FSD were larger when the flame curvature was zero. The combined thickness and FSD data suggest that the curvature effect is more dominant than that of the stretch by turbulent eddies during flame propagation. Integrated flame surface density for both propane and methane flames exhibited no dependance on u'/SL regardless of the FSD method used for evaluation. This observation implies that flame surface area may not be the dominant factor in increasing the turbulent burning velocity and the flamelet assumption may not be valid under the conditions studied. Dκ term, the product of diffusivity evaluated at conditions studied and the flame front curvature, was a magnitude smaller than or the same magnitude as the laminar burning velocity.
39

Uncertainty Quantification for Scale-Bridging Modeling of Multiphase Reactive Flows

Iavarone, Salvatore 24 April 2019 (has links) (PDF)
The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of novel and cost-effective combustion technologies and the minimization of environmental concerns at industrial scale. CFD simulations facilitate scaling-up procedures that otherwise would be complicated by strong interactions between reaction kinetics, turbulence and heat transfer. CFD calculations can be applied directly at the industrial scale of interest, thus avoiding scaling-up from lab-scale experiments. However, this advantage can only be obtained if CFD tools are quantitatively predictive and trusted as so. Despite the improvements in the computational capability, the implementation of detailed physical and chemical models in CFD simulations can still be prohibitive for real combustors, which require large computational grids and therefore significant computational efforts. Advanced simulation approaches like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) guarantee higher fidelity in computational modeling of combustion at, unfortunately, increased computational cost. However, with adequate, reduced, and cost-effective modeling of physical phenomena, such as chemical kinetics and turbulence-chemistry interactions, and state of the art computing, LES will be the tool of choice to describe combustion processes at industrial scale accurately. Therefore, the development of reduced physics and chemistry models with quantified model-form uncertainty is needed to overcome the challenges of performing LES of industrial systems. Reduced-order models must reproduce the main features of the corresponding detailed models. They feature predictivity and capability of bridging scales when validated against a broad range of experiments and targeted by Validation and Uncertainty Quantification (V/UQ) procedures. In this work, V/UQ approaches are applied for reduced-order modeling of pulverized coal devolatilization and subsequent char oxidation, and furthermore for modeling NOx emissions in combustion systems.For coal devolatilization, a benchmark of the Single First-Order Reaction (SFOR) model was performed concerning the accuracy of the prediction of volatile yield. Different SFOR models were implemented and validated against experimental data coming from tests performed in an entrained flow reactor at oxy-conditions, to shed light on their drawbacks and benefits. SFOR models were chosen because of their simplicity: they can be easily included in CFD codes and are very appealing in the perspective of LES of pulverized coal combustion burners. The calibration of kinetic parameters was required to allow the investigated SFOR model to be predictive and reliable for different heating rates, hold temperatures and coal types. A comparison of several calibration approaches was performed to determine if one-step models can be adaptive and able to bridge scales, without losing accuracy, and to select the calibration method to employ for wider ranges of coal rank and operating conditions. The analysis pointed out that the main drawback of the SFOR models is the assumption of a constant ultimate volatile yield, equal to the value from the coal proximate analysis. To overcome this drawback, a yield model, i.e. a simple functional form that relates the ultimate volatile yield to the particle temperature, was proposed. The model depends on two parameters that have a certain degree of uncertainty. The performances of the yield model were assessed using a collaboration of experiments and simulations of a pilot-scale entrained flow reactor. A consistency analysis, based on the Bound-to-Bound Data Collaboration (B2B-DC) approach, and a Bayesian method, based on Gaussian Process Regression (GPR), were employed for the investigation of experiments and simulations. In Bound-to- Bound Data Collaboration the model output, evaluated at specified values of the model parameters, is compared with the experimental data: if the prediction of the model falls within the experimental uncertainty, the corresponding parameter values would be included in the so-called feasible set. The existence of a non-empty feasible set signifies consistency between the experiments and the simulations, i.e. model-data agreement. Consistency was indeed found when a relative error of 19% for all the experimental data was applied. Hence, a feasible set of the two SFOR model parameters was provided. A posterior state of knowledge, indicating potential model forms that could be explored in yield modeling, was obtained by Gaussian Process Regression. The model form evaluated through the consistency analysis is included within the posterior derived from GPR, indicating that it can satisfactorily match the experimental data and provide reliable estimation in almost every range of temperatures. CFD simulations were carried out using the proposed yield model with first-order kinetics, as in the SFOR model. Results showed promising agreement between predicted and experimental conversion for all the investigated cases.Regarding char combustion modeling, the consistency analysis has been applied to validate a reduced-order model and quantify the uncertainty in the prediction of char conversion. The model capability to address heterogeneous reaction between char carbon and O2, CO2 and H2O reagents, mass transport of species in the particle boundary layer, pore diffusion, and internal surface area changes was assessed by comparison with a large number of experiments performed in air and oxy-coal conditions. Different model forms had been considered, with an increasing degree of complexity, until consistency between model outputs and experimental results was reached. Rather than performing forward propagation of the model-form uncertainty on the predictions, the reduction of the parameter uncertainty of a selected model form was pursued and eventually achieved. The resulting 11-dimensional feasible set of model parameters allows the model to predict the experimental data within almost ±10% uncertainty. Due to the high dimensionality of the problem, the employed surrogate models resulted in considerable fitting errors, which led to a spoiled UQ inverse problem. Different strategies were taken to reduce the discrepancy between the surrogate outputs and the corresponding predictions of the simulation model, in the frameworks of constrained optimization and Bayesian inference. Both strategies succeeded in reducing the fitting errors and also resulted in a least-squares estimate for the simulation model. The variety of experimental gas environments ensured the validity of the consistent reduced model for both conventional and oxy-conditions, overcoming the differences in mass transport and kinetics observed in several experimental campaigns.The V/UQ-aided modeling of coal devolatilization and char combustion was done in the framework of the Predictive Science Academic Alliance Program II (PSAAP-II) funded by the US Department of Energy. One of the final goals of PSAAP-II is to develop high-fidelity simulation tools that ensure 5% uncertainty in the incident heat flux predictions inside a 1.2GW Ultra-Super-Critical (USC) coal-fired boiler. The 5% target refers to the expected predictivity of the full-scale simulation without considering the uncertainty in the scenario parameters. The data-driven approaches used in this Thesis helped to improve the predictivity of the investigated models and made them suitable for LES of the 1.2GW USC coal-fired boiler. Moreover, they are suitable for scale-bridging modeling of similar multi-phase processes involved in the conversion of solid renewable sources, such as biomass.In the final part of the Thesis, the sensitivity to finite-rate chemistry combustion models and kinetic mechanisms on the prediction of NO emissions was assessed. Moreover, the forward propagation of the uncertainty in the kinetics of the NNH route (included in the NOx chemistry) on the predictions of NO was investigated to reveal the current state of the art of kinetic modeling of NOx formation. The analysis was carried out on a case where NOx formation comes from various formation routes, both conventional (thermal and prompt) and unconventional ones. To this end, a lab-scale combustion system working in Moderate and Intense Low-oxygen Dilution (MILD) conditions was selected. The results showed considerable sensitivity of the NO emissions to the uncertain kinetic parameters of the rate-limiting reactions of the NNH pathway when a detailed kinetic mechanism is used. The analysis also pointed out that the use of one-step global rate schemes for the NO formation pathways, necessary when a skeletal kinetic mechanism is employed, lacks the required chemical accuracy and dims the importance of the NNH pathway in this combustion regime. An engineering modification of the finite-rate combustion model was proposed to account for the different chemical time scales of the fuel-oxidizer reactions and NOx formation pathways. It showed an equivalent impact on the emissions of NO than the uncertainty in the kinetics of the NNH route. At the cost of introducing a small mass imbalance (of the order of ppm), the adjustment led to improved predictions of NO. The investigation established a possibility for the engineering modeling of NO formation in MILD combustion with a finite-rate chemistry combustion model that can incorporate a detailed mechanism at affordable computational costs. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
40

Artificial neural networks based subgrid chemistry model for turbulent reactive flow simulations

Sen, Baris Ali 17 August 2009 (has links)
Two new models to calculate the species instantaneous and filtered reaction rates for multi-step, multi-species chemical kinetics mechanisms are developed based on the artificial neural networks (ANN) approach. The proposed methodologies depend on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence level of interest. The thermo-chemical database is constructed by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. In this approach, the information regarding the actual geometry of interest is not needed within the LEM computations. The developed models are validated extensively on the large eddy simulations (LES) of (i) premixed laminar-flame-vortex-turbulence interaction, (ii) temporally mixing non-premixed flame with extinction-reignition characteristics, and (iii) stagnation point reverse flow combustor, which utilizes exhaust gas re-circulation technique. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless.

Page generated in 0.0409 seconds