• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 20
  • 16
  • 8
  • 1
  • Tagged with
  • 218
  • 218
  • 55
  • 55
  • 47
  • 35
  • 33
  • 31
  • 31
  • 25
  • 25
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantificação de incertezas aplicada à geomecânica de reservatórios

PEREIRA, Leonardo Cabral 08 July 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-04T11:22:15Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TeseLeoCabral_vrsFinal.pdf: 37484380 bytes, checksum: b61e5bb415f505345e69623ffd098b9e (MD5) / Made available in DSpace on 2016-07-04T11:22:15Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TeseLeoCabral_vrsFinal.pdf: 37484380 bytes, checksum: b61e5bb415f505345e69623ffd098b9e (MD5) Previous issue date: 2015-07-08 / A disciplina de geomecânica de reservatórios engloba aspectos relacionados não somente à mecânica de rochas, mas também à geologia estrutural e engenharia de petróleo e deve ser entendida no intuito de melhor explicar aspectos críticos presentes nas fases de exploração e produção de reservatórios de petróleo, tais como: predição de poro pressões, estimativa de potenciais selantes de falhas geológicas, determinação de trajetórias de poços, cálculo da pressão de fratura, reativação de falhas, compactação de reservatórios, injeção de CO2, entre outros. Uma representação adequada da quantificação de incertezas é parte essencial de qualquer projeto. Especificamente, uma análise que se destina a fornecer informações sobre o comportamento de um sistema deve prover uma avaliação da incerteza associada aos resultados. Sem tal estimativa, perspectivas traçadas a partir da análise e decisões tomadas com base nos resultados são questionáveis. O processo de quantificação de incertezas para modelos multifísicos de grande escala, como os modelos relacionados à geomecânica de reservatórios, requer uma atenção especial, principalmente, devido ao fato de comumente se deparar com cenários em que a disponibilidade de dados é nula ou escassa. Esta tese se propôs a avaliar e integrar estes dois temas: quantificação de incertezas e geomecânica de reservatórios. Para isso, foi realizada uma extensa revisão bibliográfica sobre os principais problemas relacionados à geomecânica de reservatórios, tais como: injeção acima da pressão de fratura, reativação de falhas geológicas, compactação de reservatórios e injeção de CO2. Esta revisão contou com a dedução e implementação de soluções analíticas disponíveis na literatura relatas aos fenômenos descritos acima. Desta forma, a primeira contribuição desta tese foi agrupar diferentes soluções analíticas relacionadas à geomecânica de reservatórios em um único documento. O processo de quantificação de incertezas foi amplamente discutido. Desde a definição de tipos de incertezas - aleatórias ou epistêmicas, até a apresentação de diferentes metodologias para quantificação de incertezas. A teoria da evidência, também conhecida como Dempster-Shafer theory, foi detalhada e apresentada como uma generalização da teoria da probabilidade. Apesar de vastamente utilizada em diversas áreas da engenharia, pela primeira vez a teoria da evidência foi utilizada na engenharia de reservatórios, o que torna tal fato uma contribuição fundamental desta tese. O conceito de decisões sob incerteza foi introduzido e catapultou a integração desses dois temas extremamente relevantes na engenharia de reservatórios. Diferentes cenários inerentes à tomada de decisão foram descritos e discutidos, entre eles: a ausência de dados de entrada disponíveis, a situação em que os parâmetros de entrada são conhecidos, a inferência de novos dados ao longo do projeto e, por fim, uma modelagem híbrida. Como resultado desta integração foram submetidos 3 artigos a revistas indexadas. Por fim, foi deduzida a equação de fluxo em meios porosos deformáveis e proposta uma metodologia explícita para incorporação dos efeitos geomecânicos na simulação de reservatórios tradicional. Esta metodologia apresentou resultados bastante efetivos quando comparada a métodos totalmente acoplados ou iterativos presentes na literatura. / Reservoir geomechanics encompasses aspects related to rock mechanics, structural geology and petroleum engineering. The geomechanics of reservoirs must be understood in order to better explain critical aspects present in petroleum reservoirs exploration and production phases, such as: pore pressure prediction, geological fault seal potential, well design, fracture propagation, fault reactivation, reservoir compaction, CO2 injection, among others. An adequate representation of the uncertainties is an essential part of any project. Specifically, an analysis that is intended to provide information about the behavior of a system should provide an assessment of the uncertainty associated with the results. Without such estimate, perspectives drawn from the analysis and decisions made based on the results are questionable. The process of uncertainty quantification for large scale multiphysics models, such as reservoir geomechanics models, requires special attention, due to the fact that scenarios where data availability is nil or scarce commonly come across. This thesis aimed to evaluate and integrate these two themes: uncertainty quantification and reservoir geomechanics. For this, an extensive literature review on key issues related to reservoir geomechanics was carried out, such as: injection above the fracture pressure, fault reactivation, reservoir compaction and CO2 injection. This review included the deduction and implementation of analytical solutions available in the literature. Thus, the first contribution of this thesis was to group different analytical solutions related to reservoir geomechanics into a single document. The process of uncertainty quantification has been widely discussed. The definition of types of uncertainty - aleatory or epistemic and different methods for uncertainty quantification were presented. Evidence theory, also known as Dempster- Shafer theory, was detailed and presented as a probability theory generalization. Although widely used in different fields of engineering, for the first time the evidence theory was used in reservoir engineering, which makes this fact a fundamental contribution of this thesis. The concept of decisions under uncertainty was introduced and catapulted the integration of these two extremely important issues in reservoir engineering. Different scenarios inherent in the decision-making have been described and discussed, among them: the lack of available input data, the situation in which the input parameters are known, the inference of new data along the design time, and finally a hybrid modeling. As a result of this integration three articles were submitted to peer review journals. Finally, the flow equation in deformable porous media was presented and an explicit methodology was proposed to incorporate geomechanical effects in the reservoir simulation. This methodology presented quite effective results when compared to fully coupled or iterative methods in the literature.
52

Analyse de sensibilité pour la simulation numérique des écoulements compressibles en aérodynamique externe / Sensitivity analysis for numerical simulation of compressible flows in external aerodynamics

Resmini, Andrea 11 December 2015 (has links)
L'analyse de sensibilité pour la simulation numérique des écoulements compressibles en aérodynamique externe par rapport à la discrétisation de maillage et aux incertitudes liées à des paramètres d'entrées du modèle a été traitée 1- par le moyen des méthodes adjointes pour le calcul de gradient et 2- par approximations stochastiques non-intrusives basées sur des grilles creuses. 1- Une méthode d'adaptation de maillages goal-oriented basée sur les dérivées totales des fonctions aérodynamiques d'intérêt par rapport aux nœuds du maillage a été introduite sous une forme améliorée. La méthode s'applique au cadre de volumes finis pour des écoulements RANS pour des maillages mono-bloc et multi-bloc structurés. Des applications 2D pour des écoulements transsoniques ainsi que subsonique détaché atour d'un profil pour l'estimation du coefficient de traînée sont présentées. L'apport de la méthode proposée est vérifié. 2- Les méthodes du polynôme de chaos généralisé sous forme pseudospectrale creuse et de la collocation stochastique construite sur des grilles creuses isotropes et anisotropes sont examinées. Les maillages anisotropes sont obtenus par le biais d'une méthode adaptive basée sur l'analyse de sensibilité globale. L'efficacité des ces approximations est testée avec des fonctions test et des écoulements aérodynamiques visqueux autour d'un profil en présence d'incertitudes géométriques et opérationnelles. L'intégration des méthodes et aboutissements 1- et 2- dans une approche couplée permettrait de contrôler de façon équilibrée l'erreur déterministe/stochastique goal-oriented. / Sensitivity analysis for the numerical simulation of external aerodynamics compressible flows with respect to the mesh discretization and to the model input parametric uncertainty has been addressed respectively 1- through adjoint-based gradient computation techniques and 2- through non-intrusive stochastic approximation methods based on sparse grids. 1- An enhanced goal-oriented mesh adaptation method based on aerodynamic functional total derivatives with respect to mesh coordinates in a RANS finite-volume mono-block and non-matching multi-block structured grid framework is introduced. Applications to 2D RANS flow about an airfoil in transonic and detached subsonic conditions for the drag coefficient estimation are presented. The asset of the proposed method is patent. 2- The generalized Polynomial Chaos in its sparse pseudospectral form and stochastic collocation methods based on both isotropic and dimension-adapted sparse grids obtained through an improved dimension-adaptivity method driven by global sensitivity analysis are considered. The stochastic approximations efficiency is assessed on multi-variate test functions and airfoil viscous aerodynamics simulation in the presence of geometrical and operational uncertainties. Integration of achievements 1- and 2- into a coupled approach in future work will pave the way for a well-balanced goal-oriented deterministic/stochastic error control.
53

A Comprehensive Coal Conversion Model Extended to Oxy-Coal Conditions

Holland, Troy Michael 01 July 2017 (has links)
CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. However, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. This work extends a comprehensive char conversion code (the Carbon Conversion Kinetics or CCK model), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work, the CCK model was thoroughly investigated with a global sensitivity analysis. The sensitivity analysis highlighted several submodels in the CCK code, which were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include a greatly extended annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the Chemical Percolation Devolatilization (CPD) model. The resultant Carbon Conversion Kinetics for oxy-coal combustion (CCK/oxy) model predictions were compared to oxy-coal data, and further compared to parallel data sets obtained at near conventional conditions.
54

The Role of Constitutive Model in Traumatic Brain Injury Prediction

Kacker, Shubhra 28 October 2019 (has links)
No description available.
55

Quantification of the parametric uncertainty in the specific absorption rate calculation of a mobile phone / Quantification de l'incertitude paramétrique dans le calcul de débit d'absorption spécifique d'un téléphone mobile

Cheng, Xi 15 December 2015 (has links)
La thèse porte sur la quantification d'incertitude de paramètres (Uncertainty Quantification ou UQ) dans le calcul du débit d'absorption spécifique (Specific Absorption Rate ou SAR) de téléphones mobiles. L'impact de l'incertitude, ainsi le manque de connaissances détaillées sur les propriétés électriques des matériaux, les caractéristiques géométriques du système, etc., dans le calcul SAR est quantifiée par trois méthodes de calcul efficaces dites non-intrusives : Transformation non parfumée (Unscented Transformation ou UT), collocation stochastique (Stochastic Collocation ou SC) et polynômes de chaos non-intrusifs (Non-Intrusive Polynomial Chaos ou NIPC).Ces méthodes sont en effet appelées méthodes non intrusives puisque le processus de simulation est tout simplement considéré comme une boîte noire sans que ne soit modifié le code du solveur de simulation. Leurs performances pour les cas de une et deux variables aléatoires sont analysées dans le présent travail. En contraste avec le procédé d'analyse d'incertitude traditionnel (la méthode de Monte Carlo ou MCM), le temps de calcul devient acceptable. Afin de simplifier la procédure UQ pour le cas de plusieurs entrées incertaines, il est démontré que des incertitudes peuvent être combinées de manière à évaluer l'incertitude sur les paramètres de la sortie.Combiner des incertitudes est une approche généralement utilisée dans le domaine des mesures, et ici, il est utilisé dans le calcul du SAR pour la situation complexe. Une des étapes nécessaires dans le cadre de l'analyse d'incertitude est l'analyse de sensibilité (Sensitivity Analysis ou SA), qui vise à quantifier l'importance relative de chaque paramètre d'entrée incertain par rapport à l'incertitude de la sortie. La méthode reposant sur le calcul des indices de sensibilité de Sobol est employée, ces indices étant évalués par un développement en polynômes de chaos, au lieu d'utiliser la méthode de Monte-Carlo dans le calcul SAR. Les résultats des investigations sont présentés et discutés.Afin de faciliter la lecture, des notions élémentaires de débit d'absorption spécifique, de modélisation, d'incertitude dans la modélisation, de théorie des probabilités, et de calcul SAR par l'un des solveurs de simulation sont proposés dans l'Introduction (chapitre 1). Puis l'usage des méthodes non-intrusives UQ telles que UT, SC et NIPC, et l'application de la méthode des indices de Sobol pour l'analyse de sensibilité dans le calcul SAR est présentée dans les chapitres 2 et 3. Dans le chapitre 4, une autre approche d'utilisation des polynômes de chaos est fournie, et elle est utilisée dans le domaine temporel par l'intermédiaire d'un code de différences finies (Finite Difference-Time Domain ou FD-TD). Puisque le code FD-TD dans le solveur de simulation peut en effet être modifié, c'est le développement en polynômes de chaos intrusifs, étudié en détail par un certain nombre de scientifiques déjà, qui est considéré. Dans le chapitre 5, les conclusions et un aperçu des travaux futurs sont fournis. / This thesis focuses on parameter uncertainty quantification (UQ) in specific absorptionrate (SAR) calculation using a computer-aided design (CAD) mobile phone model.The impact of uncertainty, e.g., lack of detailed knowledge about material electricalproperties, system geometrical features, etc., in SAR calculation is quantified by threecomputationally efficient non-intrusive UQ methods: unscented transformation (UT),stochastic collocation (SC) and non-intrusive polynomial chaos (NIPC). They are callednon-intrusive methods because the simulation process is simply considered as a blackboxwithout changing the code of the simulation solver. Their performances for thecases of one and two random variables are analysed. In contrast to the traditionaluncertainty analysis method: Monte Carlo method, the time of the calculation becomesacceptable. To simplify the UQ procedure for the case of multiple uncertain inputs, it isdemonstrated that uncertainties can be combined to evaluate the parameter uncertaintyof the output. Combining uncertainties is an approach generally used in the field ofmeasurement, in this thesis, it is used in SAR calculations in the complex situation. Oneof the necessary steps in the framework of uncertainty analysis is sensitivity analysis (SA)which aims at quantifying the relative importance of each uncertain input parameterwith respect to the uncertainty of the output. Polynomial chaos (PC) based Sobol’indices method whose SA indices are evaluated by PC expansion instead of Monte Carlomethod is used in SAR calculation. The results of the investigations are presented anddiscussed.In order to make the reading easier, elementary notions of SAR, modelling, uncertaintyin modelling, and probability theory are given in introduction (chapter 1). Thenthe main content of this thesis are presented in chapter 2 and chapter 3. In chapter 4,another approach to use PC expansion is given, and it is used in the finite-differencetime-domain (FDTD) code. Since the FDTD code in the simulation solver should bechanged, it is so-called intrusive PC expansion. Intrusive method already investigatedin details in other people’s thesis. In chapter 5, conclusions and future work are given.
56

Efficient Uncertainty Characterization Framework in Neutronics Core Simulation with Application to Thermal-Spectrum Reactor Systems

Dongli Huang (7473860) 16 April 2020 (has links)
<div>This dissertation is devoted to developing a first-of-a-kind uncertainty characterization framework (UCF) providing comprehensive, efficient and scientifically defendable methodologies for uncertainty characterization (UC) in best-estimate (BE) reactor physics simulations. The UCF is designed with primary application to CANDU neutronics calculations, but could also be applied to other thermal-spectrum reactor systems. The overarching goal of the UCF is to propagate and prioritize all sources of uncertainties, including those originating from nuclear data uncertainties, modeling assumptions, and other approximations, in order to reliably use the results of BE simulations in the various aspects of reactor design, operation, and safety. The scope of this UCF is to propagate nuclear data uncertainties from the multi-group format, representing the input to lattice physics calculations, to the few-group format, representing the input to nodal diffusion-based core simulators and quantify the uncertainties in reactor core attributes.</div><div>The main contribution of this dissertation addresses two major challenges in current uncertainty analysis approaches. The first is the feasibility of the UCF due to the complex nature of nuclear reactor simulation and computational burden of conventional uncertainty quantification (UQ) methods. The second goal is to assess the impact of other sources of uncertainties that are typically ignored in the course of propagating nuclear data uncertainties, such as various modeling assumptions and approximations.</div>To deal with the first challenge, this thesis work proposes an integrated UC process employing a number of approaches and algorithms, including the physics-guided coverage mapping (PCM) method in support of model validation, and the reduced order modeling (ROM) techniques as well as the sensitivity analysis (SA) on uncertainty sources, to reduce the dimensionality of uncertainty space at each interface of neutronics calculations. In addition to the efficient techniques to reduce the computational cost, the UCF aims to accomplish four primary functions in uncertainty analysis of neutronics simulations. The first function is to identify all sources of uncertainties, including nuclear data uncertainties, modeling assumptions, numerical approximations and technological parameter uncertainties. Second, the proposed UC process will be able to propagate the identified uncertainties to the responses of interest in core simulation and provide uncertainty quantifications (UQ) analysis for these core attributes. Third, the propagated uncertainties will be mapped to a wide range of reactor core operation conditions. Finally, the fourth function is to prioritize the identified uncertainty sources, i.e., to generate a priority identification and ranking table (PIRT) which sorts the major sources of uncertainties according to the impact on the core attributes’ uncertainties. In the proposed implementation, the nuclear data uncertainties are first propagated from multi-group level through lattice physics calculation to generate few-group parameters uncertainties, described using a vector of mean values and a covariance matrix. Employing an ROM-based compression of the covariance matrix, the few-group uncertainties are then propagated through downstream core simulation in a computationally efficient manner.<div>To explore on the impact of uncertainty sources except for nuclear data uncertainties on the UC process, a number of approximations and assumptions are investigated in this thesis, e.g., modeling assumptions such as resonance treatment, energy group structure, etc., and assumptions associated with the uncertainty analysis itself, e.g., linearity assumption, level of ROM reduction and associated number of degrees of freedom employed. These approximations and assumptions have been employed in the literature of neutronic uncertainty analysis yet without formal verifications. The major argument here is that these assumptions may introduce another source of uncertainty whose magnitude needs to be quantified in tandem with nuclear data uncertainties. In order to assess whether modeling uncertainties have an impact on parameter uncertainties, this dissertation proposes a process to evaluate the influence of various modeling assumptions and approximations and to investigate the interactions between the two major uncertainty sources. To explore this endeavor, the impact of a number of modeling assumptions on core attributes uncertainties is quantified.</div><div>The proposed UC process has first applied to a BWR application, in order to test the uncertainty propagation and prioritization process with the ROM implementation in a wide range of core conditions. Finally, a comprehensive uncertainty library for CANDU uncertainty analysis with NESTLE-C as core simulator is generated compressed uncertainty sources from the proposed UCF. The modeling uncertainties as well as their impact on the parameter uncertainty propagation process are investigated on the CANDU application with the uncertainty library.</div>
57

POLYNOMIAL CHAOS EXPANSION IN BIO- AND STRUCTURAL MECHANICS / MISE EN OEUVRE DU CHAOS POLYNOMIAL EN BIOMECANIQUE ET EN MECANIQUE DES STRUCTURES

Szepietowska, Katarzyna 12 October 2018 (has links)
Cette thèse présente une approche probabiliste de la modélisation de la mécanique des matériaux et des structures. Le dimensionnement est influencé par l'incertitude des paramètres d'entrée. Le travail est interdisciplinaire et les méthodes décrites sont appliquées à des exemples de biomécanique et de génie civil. La motivation de ce travail était le besoin d'approches basées sur la mécanique dans la modélisation et la simulation des implants utilisés dans la réparation des hernies ventrales. De nombreuses incertitudes apparaissent dans la modélisation du système implant-paroi abdominale. L'approche probabiliste proposée dans cette thèse permet de propager ces incertitudes et d’étudier leurs influences respectives. La méthode du chaos polynomial basée sur la régression est utilisée dans ce travail. L'exactitude de ce type de méthodes non intrusives dépend du nombre et de l'emplacement des points de calcul choisis. Trouver une méthode universelle pour atteindre un bon équilibre entre l'exactitude et le coût de calcul est encore une question ouverte. Différentes approches sont étudiées dans cette thèse afin de choisir une méthode efficace et adaptée au cas d’étude. L'analyse de sensibilité globale est utilisée pour étudier les influences des incertitudes d'entrée sur les variations des sorties de différents modèles. Les incertitudes sont propagées aux modèles implant-paroi abdominale. Elle permet de tirer des conclusions importantes pour les pratiques chirurgicales. À l'aide de l'expertise acquise à partir de ces modèles biomécaniques, la méthodologie développée est utilisée pour la modélisation de joints de bois historiques et la simulation de leur comportement mécanique. Ce type d’étude facilite en effet la planification efficace des réparations et de la rénovation des bâtiments ayant une valeur historique. / This thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the investigation of their respective influences. The regression-based polynomial chaos expansion method is used here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an open question so different approaches are investigated in this thesis in order to choose an efficient method. Global sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to draw some conclusions important for further research. Using the expertise acquired from biomechanical models, modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical value.
58

Efficient Uncertainty quantification with high dimensionality

Jianhua Yin (12456819) 25 April 2022 (has links)
<p>Uncertainty exists everywhere in scientific and engineering applications. To avoid potential risk, it is critical to understand the impact of uncertainty on a system by performing uncertainty quantification (UQ) and reliability analysis (RA). However, the computational cost may be unaffordable using current UQ methods with high-dimensional input. Moreover, current UQ methods are not applicable when numerical data and image data coexist. </p> <p>To decrease the computational cost to an affordable level and enable UQ with special high dimensional data (e.g. image), this dissertation develops three UQ methodologies with high dimensionality of input space. The first two methods focus on high-dimensional numerical input. The core strategy of Methodology 1 is fixing the unimportant variables at their first step most probable point (MPP) so that the dimensionality is reduced. An accurate RA method is used in the reduced space. The final reliability is obtained by accounting for the contributions of important and unimportant variables. Methodology 2 addresses the issue that the dimensionality cannot be reduced when most of the variables are important or when variables equally contribute to the system. Methodology 2 develops an efficient surrogate modeling method for high dimensional UQ using Generalized Sliced Inverse Regression (GSIR), Gaussian Process (GP)-based active learning, and importance sampling. A cost-efficient GP model is built in the latent space after dimension reduction by GSIR. And the failure boundary is identified through active learning that adds optimal training points iteratively. In Methodology 3, a Convolutional Neural Networks (CNN) based surrogate model (CNN-GP) is constructed for dealing with mixed numerical and image data. The numerical data are first converted into images and the converted images are then merged with existing image data. The merged images are fed to CNN for training. Then, we use the latent variables of the CNN model to integrate CNN with GP to quantify the model error using epistemic uncertainty. Both epistemic uncertainty and aleatory uncertainty are considered in uncertainty propagation. </p> <p>The simulation results indicate that the first two methodologies can not only improve the efficiency but also maintain adequate accuracy for the problems with high-dimensional numerical input. GSIR with active learning can handle the situations that the dimensionality cannot be reduced when most of the variables are important or the importance of variables are close. The two methodologies can be combined as a two-stage dimension reduction for high-dimensional numerical input. The third method, CNN-GP, is capable of dealing with special high-dimensional input, mixed numerical and image data, with the satisfying regression accuracy and providing an estimate of the model error. Uncertainty propagation considering both epistemic uncertainty and aleatory uncertainty provides better accuracy. The proposed methods could be potentially applied to engineering design and decision making. </p>
59

Subgrid models for heat transfer in multiphase flows with immersed geometry

Lane, William 21 June 2016 (has links)
Multiphase flows are ubiquitous across engineering disciplines: water-sediment river flows in civil engineering, oil-water-sand transportation flows in petroleum engineering; and sorbent-flue gas reactor flows in chemical engineering. These multiphase flows can include a combination of momentum, heat, and mass transfer. Studying and understanding the behavior of multiphase, multiphysics flow configurations can be crucial for safe and efficient engineering design. In this work, a framework for the development and validation, verification and uncertainty quantification (VVUQ) of subgrid models for heat transfer in multiphase flows is presented. The framework is developed for a carbon capture reactor; however, the concepts and methods described in this dissertation can be generalized and applied broadly to multiphase/multiphysics problems. When combined with VVUQ methods, these tools can provide accurate results at many length scales, enabling large upscaling problems to be simulated accurately and with calculable errors. The system of interest is a post-combustion solid-sorbent carbon capture reactor featuring a solid-sorbent bed that is fluidized with post-combustion flue gas. As the flue gas passes through the bed, the carbon dioxide is exothermically adsorbed onto the sorbent particle’s surface, and the clean gas is passed onto further processes. To prevent overheating and degradation of the sorbent material, cooling cylinders are immersed in the flow to regulate temperatures. Simulating a full-scale, gas-particle reactor using traditional methods is computationally intractable due to the long time scale and variations in length scales: reactor, O(10 m); cylinders, O(1 cm); and sorbent particles, O(100 um). This research developed an efficient subgrid method for simulating such a system. A constitutive model was derived to predict the effective suspension-cylinder Nusselt number based on the local flow and material properties and the cylinder geometry, analogous to single-phase Nusselt number correlations. This model was implemented in an open source computational fluid dynamics code, MFIX, and has undergone VVUQ. Verification and validation showed great agreement with comparable highly-resolved simulations, achieving speedups of up to 10,000 times faster. Our model is currently being used to simulate a 1 MW, solid-sorbent carbon capture unit and is outperforming previous methods in both speed and physically accuracy. / 2017-06-21T00:00:00Z
60

Statistical analysis of river discharge change in the Indochinese Peninsula using largo ensemble future climate projections / 多数アンサンブル将来気候予測情報を用いたインドシナ半島での河川流量変化の統計的分析

Hanittinan, Patinya 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20677号 / 工博第4374号 / 新制||工||1680(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 立川 康人, 教授 中北 英一, 准教授 森 信人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0346 seconds