• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] DEFINITION OF A QUALITY INDEX FOR ELECTRIC POWER DISTRIBUTION COMPANIES USING MULTIPLE CRITERIA DECISION SUPPORT AND TIME SERIES ANALYSIS / [pt] DEFINIÇÃO DE UM ÍNDICE DE QUALIDADE PARA DISTRIBUIDORAS DE ENERGIA ELÉTRICA UTILIZANDO O APOIO MULTICRITÉRIO À DECISÃO E ANÁLISE DE SÉRIES TEMPORAIS

ADERSON CAMPOS PASSOS 06 June 2011 (has links)
[pt] O presente trabalho desenvolve um método híbrido com a finalidade de criar um índice de qualidade para distribuidoras de energia elétrica. Esse método é construído através da fusão do Método de Análise Hierárquica (AHP) e Técnicas de Amortecimento Exponencial. Com isso, é possível avaliar uma distribuidora levando em conta múltiplos critérios e seus diversos índices passados. / [en] This work develops a hybrid method in order to create a quality index for electric power distribution companies. This method is built through the merger of the Analytical Hierarchy Process (AHP) and exponential smoothing techniques. Thus, it is possible to evaluate a distribution company taking into account multiple criteria and its several indexes in the past.
2

[en] METHODOLOGY FOR IMPLEMENTATION OF SYSTEMS TO FORECAST DEMAND: A CASE STUDY IN A CHEMICALS DISTRIBUTOR / [pt] METODOLOGIA PARA IMPLEMENTAÇÃO DE SISTEMAS DE PREVISÃO DE DEMANDA: UM ESTUDO DE CASO EM UM DISTRIBUIDOR DE PRODUTOS QUÍMICOS

LAURA GONÇALVES CARVALHO 25 March 2011 (has links)
[pt] Esta dissertação teve como objetivo o desenvolvimento e a implantação de uma metodologia de previsão de vendas e dimensionamento de lotes de encomenda num distribuidor atacadista de produtos químicos. Para tanto, abordou técnicas quantitativas de previsão de demanda de curto prazo e medidas de variância dos erros de previsão a fim de suportar decisões empresariais na aplicação da metodologia, capazes de projetar padrões passados num cenário futuro. A aplicação da metodologia possibilitará à empresa a formalização de um processo atualmente subjetivo, outorgando maior precisão na previsão de vendas, redução de custos com estoque e uma base mais concreta para alocação de recursos financeiros. / [en] This thesis has as objective the developing and implantation of a methodology for forecasting sales and design of batch ordering in a wholesale distributor of chemical products. For this purpose, it approached short term quantitative techniques of demand forecast and measures of variance of forecast errors in order to support business decisions on the application of the methodology, able to design past patterns on a future scenario. The application of the methodology will enable the company the formalization of a process currently subjective, granting a greater accuracy in forecasting sales, reduction in the inventory costs and a more concrete basis for resource allocation.
3

[en] FORECASTING OF JUDICIAL CONTINGENCY IN ELECTRIC SECTOR COMPANIES: AN APPROACH VIA DYNAMIC REGRESSION AND EXPONENTIAL SMOOTHING / [pt] PREVISÃO DE CONTINGÊNCIA JUDICIAL EM EMPRESAS DO SETOR ELÉTRICO: UMA ABORDAGEM VIA REGRESSÃO DINÂMICA E AMORTECIMENTO EXPONENCIAL

BRUNO AGRÉLIO RIBEIRO 03 October 2012 (has links)
[pt] Esta dissertação tem como objetivo principal a proposição de modelos para previsão, em um curto prazo, do número de processos que são ajuizados em desfavor de uma empresa do setor elétrico. A metodologia utilizada consiste em, a partir de uma análise exploratória dos dados, construir modelos usando uma estratégia bottom-up, ou seja, parte-se de um modelo simples e processa-se seu refinamento até encontrar um modelo apropriado que mais se adeque à realidade. Partiu-se então de um modelo auto projetivo indo até uma formulação de um modelo de regressão dinâmica. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência de se utilizar modelos de regressão dinâmica para este tipo de previsão tendo em vista a presença de correlação serial dos resíduos, comumente presentes nas séries econômicas. Propõe-se, ao final, uma ferramenta para, a partir dos valores estimados, analisar a viabilidade econômica de estimular ou desestimular as medidas responsáveis pela geração de processos contra a empresa. / [en] The aim of this dissertation is to develop short term models to forecast the number of judicial process in electric sector companies. From the methodology point of view, data is analyzed and models using bottom-up strategy is developed. In other words, a simple model is improved step by step until a proper model that fits well the reality is found. From a univariate model it ends up in a dynamic regression model. The models obtained in this study are compared according to some criterion, mainly forecast accuracy. In the end the conclusion is about the efficiency of dynamic regression models for this kind of forecast, which one presents data with serial correlation of residues, commonly present in economic series. In the end, from the estimated values, it´s proposed a mechanism to analyze the economic viability, to encourage or not, actions which are responsible for instigating judicial processes against the company.
4

[en] ANALYSIS AND FORECASTING OF TIME SERIES USING MULTIPLE SEASONAL EXPONENTIAL SMOOTHING AND SIMULATION TECHNIQUES IN THE WIND ENERGY PRODUCTION / [pt] ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS UTILIZANDO AMORTECIMENTO EXPONENCIAL COM MÚLTIPLOS CICLOS E TÉCNICAS DE SIMULAÇÃO NA PRODUÇÃO DE ENERGIA EÓLICA

MATHEUS FERREIRA DE BARROS 17 May 2016 (has links)
[pt] A presente dissertação se insere no contexto da energia eólica, que é a fonte de energia que mais cresce na matriz elétrica brasileira, segundo dados da Empresa de Pesquisa de Energia (EPE), com projeções para que esse crescimento se mantenha. Com isso, a principal motivação do presente trabalho é o fato de que desenvolver e aplicar métodos de previsão cada vez mais precisos para as variáveis determinantes na produção de energia eólica em um aerogerador, como a velocidade do vento, é de crucial importância para o planejamento da operação do sistema elétrico nacional. Logo, o objetivo principal do trabalho é adaptar e aplicar uma metodologia de previsão de séries temporais em um banco de dados formado por medições de velocidade de vento. A metodologia se constrói a partir da análise exploratória dos dados, onde pode se observar características importantes, como estacionariedade na média e uma estrutura sazonal complexa, que envolve um ciclo diário e uma sazonalidade mensal. Com isso, foi adaptado um modelo de amortecimento exponencial com múltiplos ciclos que incorpora simulação de Monte Carlo e decomposição da série através do método TBATS, para realizar as previsões. Como resultados e conclusões, é possível observar que modelo adaptado se mostrou adequado para tratar o problema proposto, quando comparado com os modelos de previsão estabelecidos pela literatura, resultando em um aumento na precisão das previsões realizadas. / [en] This work is in the context of wind energy, which is the energy source that grows more in the Brazilian energy matrix, according to the Energy Research Company (EPE), with projections that this growth will continue. Thus, the main motivation of this work is the fact that developing and implementing increasingly precise forecasting methods for the key variables in the production of wind energy in a wind turbine, such as wind speed, is of crucial importance for planning of the national electric system operation. Therefore, the main objective of this work is to adapt and apply a time series forecasting methodology in a database formed by wind speed measurements. The methodology is built from the exploratory analysis of data, which can be observed important features such as stationary mean and a complex seasonal structure, which involves a daily cycle and monthly seasonality. Thus, it was adapted an exponential smoothing model that incorporates multiple cycles, Monte Carlo simulation and decomposition of the series through the TBATS method, to make forecasts. As results and conclusions, it is possible to observe that model adapted was adequate to address the proposed issue, compared with the forecast models established in the literature, resulting in an increase in the accuracy of forecasts made.
5

[en] COMBINING TO SUCCEED: A NOVEL STRATEGY TO IMPROVE FORECASTS FROM EXPONENTIAL SMOOTHING MODELS / [pt] COMBINANDO PARA TER SUCESSO: UMA NOVA ESTRATÉGIA PARA MELHORAR A PREVISÕES DE MODELOS DE AMORTECIMENTO EXPONENCIAL

TIAGO MENDES DANTAS 04 February 2019 (has links)
[pt] A presente tese se insere no contexto de previsão de séries temporais. Nesse sentido, embora muitas abordagens tenham sido desenvolvidas, métodos simples como o de amortecimento exponencial costumam gerar resultados extremamente competitivos muitas vezes superando abordagens com maior nível de complexidade. No contexto previsão, papers seminais na área mostraram que a combinação de previsões tem potencial para reduzir de maneira acentuada o erro de previsão. Especificamente, a combinação de previsões geradas por amortecimento exponencial tem sido explorada em papers recentes. Apesar da combinação de previsões utilizando Amortecimento Exponencial poder ser feita de diversas formas, um método proposto recentemente e chamado de Bagged.BLD.MBB.ETS utiliza uma técnica chamada Bootstrap Aggregating (Bagging) em combinação com métodos de amortecimento exponencial para gerar previsões mostrando que a abordagem é capaz de gerar previsões mensais mais precisas que todos os benchmarks analisados. A abordagem era considerada o estado da arte na utilização de Bagging e Amortecimento Exponencial até o desenvolvimento dos resultados obtidos nesta tese. A tese em questão se ocupa de, inicialmente, validar o método Bagged.BLD.MBB.ETS em um conjunto de dados relevante do ponto de vista de uma aplicação real, expandindo assim os campos de aplicação da metodologia. Posteriormente, são identificados motivos relevantes para redução do erro de e é proposta uma nova metodologia que utiliza Bagging, Amortecimento Exponencial e Clusters para tratar o efeito covariância, até então não identificado anteriormente na literatura do método. A abordagem proposta foi testada utilizando diferentes tipo de séries temporais da competição M3, CIF 2016 e M4, bem como utilizando dados simulados. Os resultados empíricos apontam para uma redução substancial na variância e no erro de previsão. / [en] This thesis is inserted in the context of time series forecasting. In this sense, although many approaches have been developed, simple methods such as exponential smoothing usually produce extremely competitive results, often surpassing approaches with a higher level of complexity. Seminal papers in time series forecasting showed that the combination of forecasts has the potential to dramatically reduce the forecast error. Specifically, the combination of forecasts generated by Exponential Smoothing has been explored in recent papers. Although this can be done in many ways, a specific method called Bagged.BLD.MBB.ETS uses a technique called Bootstrap Aggregating (Bagging) in combination with Exponential Smoothing methods to generate forecasts, showing that the approach can generate more accurate monthly forecasts than all the analyzed benchmarks. The approach was considered the state of the art in the use of Bagging and Exponential Smoothing until the development of the results obtained in this thesis. This thesis initially deals with validating Bagged.BLD.MBB.ETS in a data set relevant from the point of view of a real application, thus expanding the fields of application of the methodology. Subsequently, relevant motifs for error reduction are identified and a new methodology using Bagging, Exponential Smoothing and Clusters is proposed to treat the covariance effect, not previously identified in the method s literature. The proposed approach was tested using data from three time series competitions (M3, CIF 2016 and M4), as well as using simulated data. The empirical results point to a substantial reduction in variance and forecast error.
6

[en] DEMAND FORECAST: A CASE STUDY IN SUPPLY CHAIN / [pt] PREVISÃO DE DEMANDA: ESTUDO DE CASO NA CADEIA DE SUPRIMENTOS

ACHILES RAMOS RIBEIRO 08 November 2017 (has links)
[pt] A presente dissertação tem como principal objetivo a conceituação e apresentação das metodologias básicas de previsão de demanda e, a partir de um estudo de caso, a seleção da metodologia mais adequada e sua respectiva implantação. No primeiro capítulo é apresentada, além da importância do referido tema, a empresa selecionada para aplicação dos conceitos levantados, com a descrição de seus principais processos internos. No segundo capítulo foram abordados os conceitos de previsão de demanda e uma revisão dos principais modelos existentes. No capítulo seguinte, o problema que deverá ser tratado com a metodologia proposta é apresentado. Neste momento a metodologia conceituada é aplicada, através da seleção do método de previsão mais adequado ao caso estudado e respectiva modelagem, buscando melhorias em relação aos métodos de previsão existentes na empresa. Neste processo de modelagem utilizou-se o software Forecast Pro, um dos mais conceituados aplicativos de previsão de demanda no mercado. Por fim, na conclusão, avalia-se o impacto das mudanças propostas nos resultados da empresa, principalmente o aumento da precisão da previsão da demanda e, conseqüentemente, redução dos custos de importação e dos índices de stockout. / [en] The main objective of this dissertation is the presentation of basic forecasting methods and their implementation in a case study in supply chain. The first chapter points out the importance of forecasting in this context and describes the company selected for the case study and some of its internal processes that will be under scrutiny in the case study presented in this dissertation. The second chapter discusses the concepts and models of forecasting and reviews some of the major techniques in the field. In chapter three, standard forecasting techniques are apllied to real data (ten time series) from the company and select the most appropriate model in each case. Model adjustment is performed through the Forecast Pro software, one of the best-known products in the market. Chapter four contains the conclusions and the evaluation of the impacts of the proposed methodology on the company s results, especially the increased accuracy of forecasting and, consequently, the reduction in the import costs and stock out index.
7

[pt] INSERÇÃO DE VARIÁVEIS EXÓGENAS NO MODELO HOLT-WINTERS COM MÚLTIPLOS CICLOS PARA PREVISÃO DE DADOS DE ALTA FREQUÊNCIA OBSERVACIONAL DE DEMANDA DE ENERGIA ELÉTRICA / [en] INTRODUCE EXOGENOUS VARIABLES IN HOLT-WINTERS EXPONENTIAL SMOOTHING WITH MULTIPLE SEASONAL PATTERNS HIGH FREQUENCY ELECTRICITY DEMAND OBSERVATIONS

05 November 2021 (has links)
[pt] O objetivo deste trabalho é inserir variáveis exógenas no modelo Holt-Winters com múltiplos ciclos, genuinamente univariado. Serão usados dados horários de demanda de energia elétrica provenientes de uma cidade da região sudeste do Brasil e dados de temperatura, tanto em sua forma primitiva quanto derivada, por exemplo, indicadores de dias quentes, o chamado cooling degree days (CDD). Com isso, pretende-se melhorar o poder preditivo do modelo, gerando previsões com maior acurácia. / [en] The aim of this thesis is to insert exogenous variables in the model Holt-Winters with multiple cycles, genuinely univariate. Hourly data will be used for electricity demand from a city in southeastern Brazil and temperature data, both in its original form as derived, for example, indicators of hot days, cooling degree days called (CDD). With this, we intend to improve the predictive power of the model, generating predictions with greater accuracy.
8

[en] TECHNIQUES FOR DETECTION OF BIAS IN DEMAND FORECASTING: PERFORMANCE COMPARISON / [pt] TÉCNICAS PARA DETECÇÃO DE VIÉS EM PREVISÃO DE DEMANDA: COMPARAÇÃO DE DESEMPENHOS

FELIPE SCHOEMER JARDIM 09 November 2021 (has links)
[pt] Em um mundo globalizado, em contínua transformação, são cada vez mais freqüentes mudanças no perfil da demanda. Se não detectadas rapidamente, elas podem gerar impactos negativos no progresso de um negócio devido à baixa qualidade nas previsões de venda, que começam a gerar valores sistematicamente acima ou abaixo da demanda real indicando a presença de viés. Para evitar esse cenário, técnicas formais para detecção de viés podem ser incorporadas ao processo de previsão de demanda. Diante desse quadro, a presente dissertação compara os desempenhos, via simulação, das principais técnicas formais de detecção de viés em previsão de demanda presentes na literatura. Nesse sentido, seis técnicas são identificadas e analisadas. Quatro são baseadas em estatísticas Tracking Signal e duas são adaptadas de técnicas de Controle Estatístico de Processos. Os modelos de previsão de demanda monitorados pelas técnicas em questão são os de séries temporais estruturadas, associados ao método de amortecimento exponencial simples e ao método de Holt, respectivamente, para séries com nível médio constante e séries com tendência. Três tipos de alterações no perfil da demanda – que acarretam em viés na previsão – são examinados. O primeiro consiste em mudanças no nível médio em séries temporais de nível médio constante. O segundo tipo também considera séries temporais de nível médio constante, porém com o foco em surgimentos de tendências. O terceiro viés consiste em mudanças na tendência em series temporais com tendência pré-incorporada. Entre os resultados obtidos, destaca-se a conclusão de que, para a maioria das situações estudadas, as técnicas baseadas nas estatísticas Tracking Signal possuem desempenho superior às demais técnicas com relação à eficiência na detecção de viés. / [en] In a globalized world, in continuous transformation, changes in the demand pattern are increasingly frequent. If not rapidly detected, they can have a negative and persistent impact in the wellbeing of a business due to continuously poor quality sales forecasts, which begin to generate values systematically above or below the actual demand indicating the presence of bias. To avoid this happening, statistical techniques can be incorporated in a prediction process with the objective known as bias detection in demand forecasting. Considering this situation, the present dissertation compares, through simulation, the efficiency performance of the main existing formal techniques of monitoring demand forecasting models, with the view of bias detection. Six of such techniques are identified and analyzed in this work. Four are based on Tracking Signal Statistics and two are adapted from the Statistical Process Control approach. The demand forecasting models monitored by the techniques in question can be classified as structured time series, for a constant level or trend pattern, and using both the simple exponential smoothing and the Holt s methods. Three types of changes in the demand pattern - which result in biased prediction - are examined. The first one focus on simulated changes on the average level of various constant times series. The second type also considered various constant times series, but now simulating the appearance of different trends. And the third refers to simulate changes in trends in various times series with pre-established trends. Among the results attained, one stands out: the techniques based on Tracking Signal Statistics - when compares to other methods - showed superior performance insofar as efficient bias detection in demand forecasting.
9

[en] INTERVENTION MODELS TO FORECAST MONTHLY DEMAND OF ELETRIC ENERGY, CONSIDERING THE RATIONING SCENERY / [pt] MODELOS DE INTERVENÇÃO PARA PREVISÃO MENSAL DE CONSUMO DE ENERGIA ELÉTRICA CONSIDERANDO CENÁRIOS PARA O RACIONAMENTO

EVANDRO LUIZ MENDES 12 March 2003 (has links)
[pt] Nesta dissertação é desenvolvida uma metodologia para previsão de demanda mensal de energia elétrica considerando cenários de racionamento. A metodologia usada consiste em, a partir das taxas de crescimento da série temporal, identificar e eliminar os efeitos do racionamento de energia elétrica através da aplicação de Modelos Lineares Dinâmicos. São analisadas também estruturas de intervenção nos modelos estatísticos de Box & Jenkins e Holt & Winters. Os modelos são então comparados segundo alguns critérios, basicamente no que tange à sua eficiência preditiva. Conclui-se ao final sobre a eficiência da metodologia proposta, dado a grande dificuldade para solucionar o problema a partir dos modelos estatísticos de Box & Jenkins e Holt & Winters. Esta solução é então proposta como a mais viável para criar cenários de racionamento e pósracionamento de energia para ser utilizado por agentes do sistema elétrico nacional. / [en] In this dissertation, a methodology is developed to forecast monthly demand of electric energy, considering the rationing scenery. The methodology is based on, taking the growth rate from the time series, identify and eliminate the effects of electric energy rationing, using Dynamic Linear Models. It is also analyzed intervention structures in the statistics models of Box & Jenkins and Holt & Winters. The models are compared according to some criterions, mainly forecast accuracy. At the end, we concluded that the methodology proposed is more efficient, due to the difficult to solve the problem using the statistics models with intervention. This solution is proposed as the best among them to create scenery during the energy rationing and after energy rationing, to be used by the national electric system agents.

Page generated in 0.0594 seconds