1 |
[en] NUMERICAL STUDIES OF THE STABILITY OF GEOTECHNICAL MATERIALS THROUGH LIMIT ANALYSIS / [pt] ESTUDO NUMÉRICO DE PROBLEMAS DE ESTABILIDADE EM MATERIAIS GEOTÉCNICOS ATRAVÉS DA ANÁLISE LIMITELUIZ GONZAGA DE ARAUJO 12 November 2001 (has links)
[pt] O presente trabalho apresenta um estudo de problemas de
estabilidade, freqüentemente,encontrados, em Engenharia
Geotécnica, através da técnica da Análise Limite associada
ao Método dos Elementos Finitos (MEF).Inicialmente, faz-se
uma revisão das formulações da Análise Limite, via
MEF,encontradas, com maior freqüência, na literatura
técnica especializada.Uma formulação mista que é descrita
em detalhe na tese foi escolhida para implementação.
Extensões das formulações da Análise Limite de meios
contínuos são propostas para contemplar características de
maciços rochosos fraturados. É proposto,também, um
procedimento numérico para tratar de problemas de
estabilidade de meios que exibem fluxo plástico não
associado.As implementações realizadas foram validadas
através de problemas cujas soluções
podem ser obtidas por via analítica.Finalmente, um número
considerável de problemas de interesse em Engenharia
Geotécnica é estudado utilizando a implementação realizada.
Os resultados destes estudos sugerem a viabilidade da
utilização da técnica estudada na solução de problemas
práticos de Engenharia Civil. / [en] This work presents a study of stability problems often
encountered in Geotechnical Engineering, through the use of
Limit Analysis in conjunction with the Finite Element Method
(FEM).Initially, a literature survey of the most often
found formulations in Limit Analysis through the FEM is
carried out.A mixed formulation of Limit Analysis was
chosen for implementation and its details are fully
described. Extensions of the formulation to deal with
stability problems in fractured rock media are also
proposed and described. A numerical procedure to take into
account the effect of non associative plastic flow is
proposed.The implementations carried out were validated
through problems to which analytical solutions could be
found.Finally, a considerable number of problems of
interest to Geotechnical Engineering is studied with the
implemented formulation. The results of these studies
suggest that Limit Analysis can be considered as a viable
tool in the solution of practical problems in Geotechnical
Engineering.
|
2 |
[es] APLICACIÓN DEL ANÁLISIS LÍMITE A PROBLEMAS GEOTÉCNICOS MODELADOS COMO MEDIOS CONTÍNUOS CONVENCIONALES Y MEDIOS DE COSSERAT / [pt] APLICAÇÃO DA ANÁLISE LIMITE A PROBLEMAS GEOTÉCNICOS MODELADOS COMO MEIOS CONTÍNUOS CONVENCIONAIS E MEIOS DE COSSERAT / [en] APPLICATIONS OF LIMIT ANALYSIS TO GEOTECHNICAL PROBLEMS MODELLED AS CONVENTIONAL AND COSSERAT CONTINUAALDO DURAND FARFAN 05 October 2001 (has links)
[pt] O presente trabalho trata da aplicação da análise limite
numérica (ALN) a problemas geotécnicos. Os meios (solo ou
rocha) são considerados como contínuos convencionais e como
contínuos de Cosserat.
Da aplicação da formulação mista da análise limite e da
discretização do meio por uma malha de elementos finitos é
obtido um problema de programação matemática (PM).
A aplicação desta metodologia nos contínuos de Cosserat
(2D) fornece problemas de programação linear (PL) e nos
contínuos convencionais (2D e 3D), problemas de
programação não-linear (PNL).
A solução do problema de PM foi através dos programas de
otimização: LINDO (PL), LINGO (PNL), MINOS (PNL) e LANCELOT
(PNL). Também foram implementados os algoritmos não
lineares -Quase Newton com deflexão- e -Han-Powell-.
A formulação é validada em problemas cuja solução analítica
é conhecida ou em dados experimentais. Estes exemplos
mostram a rapidez e a eficácia da ALN para a determinação
da carga de colapso e do mecanismo de ruptura do problema. / [en] The present work treats of the application of the numerical
limit analysis (NLA)to geomechanics problems. The soil or
rock mass is considered as conventional continuous and
Cosserat continuous. A mathematical programming (MP)
problem is obtained through the application of the mixed
formulation of limit analysis and the finite elements mesh.
The application of this methodology in the Cosserat
continuous (2D) supplies linear programming (LP)
problems and in the conventional continuous (2D and 3D)
nonlinear programming (NLP) problems. The solution of the
problem of MP was through the LINDO (LP), LINGO (NLP),
MINOS (NLP) and LANCELOT (NLP) programs. It was also
implemented nonlinear algorithms -Quasi-Newton feasible
point method- and -Han-Powell-.The formulation is validated
in problems whose analytic solution is known or in
experimental data. These examples show the speed and the
effectiveness of NLA for the determination of the collapse
load and of the mechanism of rupture of the problem. / [es] EL presente trabajo trata de la aplicación del análisis
límite numérica (ALN) a problemas geotécnicos. Los medios
(suelo o roca) son considerados como contínuos
convencionales y como contínuos de Coserat. De la
aplicación de la formulación mixta del análisis límite y de
la discretización del medio por una malla de elementos
finitos se obtiene un problema de programación matemática
(PM). La aplicación de esta metodología en los contínuos de
Coserat (2D) nos lleva a problemas de programación lineal
(PL) y en los contínuos convencionales (2D y 3D), problemas
de programación no lineal (PNL). La solución del problema
de PM fue a través de los programas de optimización: LINDO
(PL), LINGO (PNL), MINOS (PNL) y LANCELOT (PNL). También
fueron implementados los algoritmos no lineares quase-
Newton con deflexión y Han Powell . Se evalúa la
formulación propuesta en problemas donde se conoce la
solución analítica o en datos experimentales. Estos
ejemplos muestran la rapidez y la eficacia de la ALN para
la determinación de la carga de colapso y del mecanismo de
ruptura del problema.
|
3 |
[en] THREE DIMENSIONAL LIMIT ANALYSIS USING SECOND ORDER CONE PROGRAMMING APPLIED TO SLOPE STABILITY / [pt] ANÁLISE LIMITE TRIDIMENSIONAL COMO UM PROBLEMA DE OTIMIZAÇÃO CÔNICA QUADRÁTICA: APLICAÇÃO EM ESTABILIDADE DE TALUDESJULIA DE TOLEDO CAMARGO 14 July 2016 (has links)
[pt] Visando avaliar uma ferramenta numérica efetiva para resolução de problemas de estabilidade tridimensionais, a análise limite numérica foi estudada neste trabalho. Sua abordagem numérica requer o uso tanto do método dos elementos finitos quanto de programação matemática. Isto porque os teoremas da plasticidade, base da análise limite, podem ser colocados como problemas de otimização. No teorema do limite inferior, por exemplo, se deseja maximizar o fator de colapso, com o solo sujeito a condições de equilíbrio e ao critério de ruptura. O critério de ruptura utilizado foi o de Drucker-Prager. Neste trabalho, fez-se uso da programação cônica quadrática, conhecida por possibilitar a resolução de problemas de grande escala com muita eficiência. Empregou-se, para tanto, o solver Mosek. Além de ser possível determinar o fator de colapso, também se desenvolveu um método para calcular o fator de segurança da encosta. Ele reduz sucessivamente os parâmetros de resistência do solo, através do método de Newton-Raphson. Em casos de geometrias mais complexas, a formulação do problema teve que ser modificada. Uma força horizontal fictícia foi adicionada na condição de equilíbrio e unicamente ela foi majorada com o fator de colapso. Foi apenas através desta formulação que se pode simular a estabilidade de solos submetidos ao efeito de poropressão. A análise de fluxo foi simulada a parte no programa de elementos finitos desenvolvido por Miqueletto (2007). A resistência do solo depende dos valores de poropressão, que caracterizam os solos como saturados ou não saturados. / [en] Numerical limit analysis was studied in order to evaluate an effective numerical procedure to solve three-dimensional slope stability problems. This numerical approach utilizes finite element method and mathematical programming. Mathematical programming is needed because the plasticity theorems, basic theorems for limit analysis, can be cast as optimization problems. The lower bound theorem consists of finding the maximum collapse multiplier that will lead the soil to the imminence of collapse. The soil will still be restricted to equilibrium conditions and the yield criterion will have to be satisfied everywhere. Drucker- Prager was the yield criterion chosen. In this thesis, the optimization problem is reformulated as a second order cone programming (SOCP). SOCP is known to solve large-scale problems with great computational efficiency and we used the solver Mosek. The model calculates not only the collapse multiplier, but also the safety factor for the slope. A strength reduction scheme was proposed, based on the Newton-Raphson method. For complex geometries cases, a novel formulation was developed. A fictitious horizontal force was added at the equilibrium equation and uniquely this force was increased by the multiplier factor. It was only through this reformulation that it was possible to assess stability of slopes subjected to porepressure effects. The groundwater flow was simulated separately in a finite element program developed by Miqueletto (2007). The soil strength depends on porepressure values, which define soils as saturated or unsaturated.
|
4 |
[pt] ANÁLISE LIMITE NUMÉRICA DE PROBLEMAS AXISSIMÉTRICOS EM GEOTECNIA / [en] NUMERICAL LIMIT ANALYSIS OF AXISYMMETRIC PROBLEMS IN GEOTECHNICAL ENGINEERINGDAVID SEBASTIAN CALPA JUAJINOY 24 September 2021 (has links)
[pt] Este trabalho de dissertação de mestrado apresenta a implementação da análise limite numérica com formulação mista-fraca, baseada no teorema do límite inferior, e sua aplicação em problemas de estabilidade axissimétricos. Aformulação com elementos finitos foi implementada no software
Matlab, onde se estabelece o problema de otimização que compreende a definição da equação de equilibrio e a adaptação dos criterios de ruptura de Drucker-Prager e Mohr-Coulomb às programações cônica
de segunda ordem e semidefinida, respectivamente, e que posteriormente é resolvido com o algoritmo Mosek Aps 9.2. Como resultado do problema de otimização o fator de colapso e o campo de velocidades podem ser obtidos, permitindo identificar o mecanismo de ruptura. O presente trabalho
foca-se na análise de estabilidade de um poço que é executada em 3 fases, em função das condições consideradas no modelo. Os resultados obtidos da análise axissimétrica foram validados mediante analises em modelos tridimensionais e comparados com resultados dos softwares Plaxis 2D e
Optum G2, também foram incluídos os resultados da modelagem MPM, com o sotware MPM-PUCRio. Por fim foi estudado o caso da capacidade de carga de uma fundação circular rasa, cujos resultados foram comparados com os apresentados por outros autores. / [en] This work dissertation presents the implementation of numerical limit analysis with mixed-weak formulation, based on the the lower bound limit theorem and its application in axisymmetric stability problems. The finite element formulation was implemented in Matlab, where the optimization problem is established, which comprises the definition of the equilibrium equation and the adaptation of the Drucker-Prager and Mohr-Coulomb rupture criteria to the second-order cone programming and semidefined programming, respectively, and which is later solved with the Mosek Aps 9.2 algorithm. As a result of the optimization problem, the collapse factor and the speed field can be obtained, allowing to
identify the rupture mechanism.The present work focuses on the stability analysis of a well that is carried out in 3 phases, depending on the conditions considered in the model. The results obtained in the axissymmetric analysis were validated through analysis in three-dimensional models and compared with results of plaxis 2D and Optum G2 software, also included the results of MPM modeling, with the software MPM-PUCRio. Finally, the case of the load capacity of a shallow circular foundation is studied, the results of which are compared with those presented by other authors.
|
Page generated in 0.0446 seconds