• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] COMPLEXITY IN EUCLIDEAN PLANE GEOMETRY / [pt] COMPLEXIDADE EM GEOMETRIA EUCLIDIANA PLANA

SILVANA MARINI RODRIGUES LOPES 25 February 2003 (has links)
[pt] Consideramos duas formas de complexidade em geometria euclidiana plana.Na primeira, problemas são descritos algebricamente, e a complexidade é cotada essencialmente pelo grau de um polinômio. Como consequência, mostramos que vários resultados gerais e familiares em geometria podem ser demonstrados a partir da simples verificação de dois ou três casos particulares. A segunda forma faz uso da descrição sintática dos teoremas, que permite uma quantificação da complexidade em termos lógicos (número de quantificadores e átomos de uma fórmula). Inspirados por esta última abordagem, são descritos alguns procedimentos de demonstração automática. Alguns grupos habituais de operções em geometria são apresentados com a intenção de simplificar as duas abordagens.Através do estudo de técnicas mais avançadas em matemática trazemos novos pontos de vista a assuntos estudados no ensino médio. / [en] Two forms of complexity in Euclidean plane geometry are considered. In the first one, problems are described algebraically, and the complexity level is measured essentially by the degree of a polynomial. As a consequence, many familiar and general results in geometry can be proved by inspecting two or three special cases. The second form uses the syntactic description of a theorem allowing for a quanti.cation of the complexity in logic terms (number of quantifiers and atoms in the formula). Inspired by this approach, some procedures in mechanized proofs are described. We also present some traditional groups of operations in geometry which simplify the two approaches. The study of more advanced techniques in mathematics sheds new light on standard high school topics.

Page generated in 0.0485 seconds