1 |
[en] INTERDEPENDENCE OF VOLTAGE CONTROL EQUIPMENTS: COHERENCY ASSESSMENT IN THE POWER FLOW PROBLEM / [pt] AVALIAÇÃO DA COERÊNCIA ENTRE DISPOSITIVOS DE CONTROLE NO PROBLEMA DE FLUXO DE POTÊNCIAJAVIER ORTEGA SOTOMAYOR 29 August 2012 (has links)
[pt] Com o aumento do número de dispositivos de controle representados nos
casos práticos, pode ser verificado o aparecimento de interações entre suas ações
de controle. Quando estas interações não são coordenadas podem ocasionar a
diminuição da eficiência do método de Newton-Raphson no problema de fluxo
de potência, resultando em convergências lentas e frequentemente soluções
oscilatórias ou até mesmo a divergência do método. Uma adequada identificação
destas interações pode contribuir para tomar as medidas corretivas necessárias e
assim evitar este tipo de problema. Com esse objetivo, identificam-se as
interações entre múltiplos dispositivos de controle (mais de dois equipamentos
de controle) a partir da análise dos autovalores e fatores de participação da
matriz de sensibilidade de controles denominada [MSC]. Esta matriz, elaborada
com base num modelo alternativo para a representação do controle de tensão
local das barras PV, é obtida da redução da matriz Jacobiana expandida do
problema de fluxo de potência. Dentro deste contexto, se verifica a presença de
autovalores que apresentam informações similares sobre os dispositivos de
controle com fortes interações entre suas ações de controle, desenvolvendo-se
assim, um método baseado no conceito de colinearidade capaz de identificar e
agrupar estes autovalores. Os resultados da avaliação do método desenvolvido
aplicado em sistemas de pequeno e grande porte mostram a relevância e a
viabilidade da utilização prática dos desenvolvimentos propostos neste trabalho. / [en] The increasing number of control devices represented in practical cases,
we can see the appearance of interactions between their control actions. When
these interactions are not coordinated (conflict), the efficiency of Newton-
Raphson method decrease to the power flow problem, the convergence is slow
and the solutions are oscillatory. A correct identification of these interactions can
help to take corrective actions and thus avoid this problem. With this objective,
the identification of interactions between control devices (more than 2 control
equipment) is established from the modal analysis of the sensitivity matrix
[MSC]. This sensitivity matrix [MSC] is developed in based to alternative model
to represent the local voltage control of the PV buses. This [MSC] is obtained
from the reduction of the Jacobean matrix expanded of power flow problem.
Within this context, it also checks for the presence of eigenvalues that have
similar information about the significant interactions between control devices,
thus developing a method based on the use index of sensitivity matrix [MSC]
and concept of collinearity able to identify and group these eigenvalues. The
results of the evaluation method applied to systems designed for small and large
show the relevance and feasibility of practical use of proposed developments in
this work.
|
2 |
[en] DETERMINATION OF VOLTAGE CONTROL AREAS BASED ON INTERDEPENDENT CONTROLLER EQUIPMENTS / [pt] DETERMINAÇÃO DE ÁREAS DE CONTROLE DE TENSÃO COM BASE NA INTERDEPENDÊNCIA DOS EQUIPAMENTOS CONTROLADORESJELITZA LUZ CEBALLOS INFANTES 20 September 2011 (has links)
[pt] Após a incidência de inúmeros problemas relacionados a fenômenos de
instabilidade de tensão, o controle de potência reativa em sistemas elétricos de potência
tornou-se um assunto importante os últimos anos. Um adequado controle do perfil de
tensão em uma área pode contribuir para evitar este tipo de problema. Com esse
objetivo, determinam-se áreas de controle de tensão a partir da análise dos autovalores
e autovetores das matrizes de sensibilidade: VCS Voltage Control Sensitivity Matrix e
QV. A matriz de sensibilidade [VCS] é constituída por elementos diagonais que
relacionam a grandeza controladora de cada equipamento com a respectiva tensão
controlada (variável controlada), e a análise do sinal desses elementos estabelece se
uma determinada ação de controle será adequada ou não, isto é, se terá efeito esperado
ou oposto. Os elementos fora da diagonal representam a interdependência existente
entre os equipamentos controladores de tensão. A matriz de sensibilidade QV, nomeada
como [JSQV] é obtida a partir da matriz Jacobiana do sistema linearizado das equações
de fluxo de carga. As áreas de controle de tensão determinadas da análise por
autovalores e autovetores usando-se cada uma das matrizes de sensibilidade são
coerentes. Adicionalmente, obtêm-se áreas de controle de tensão diretamente das
matrizes de sensibilidade. Estas áreas foram comparadas encontrando-se resultados
coerentes. / [en] After of the incidence of innumerable problems related to voltage instability
phenomena, the control of reactive power in electrical power systems became an
important issue in the last years. The adequate control of the voltage for a specific area
can prevent this kind of problem. With this objective, voltage control areas are
established from an eigenvalues and eigenvectors analysis of the sensitivity matrixes:
VCS Voltage Control Sensitivity Matrix and QV. The sensitive matrix [VCS] is form by
diagonal elements that relate to the controlling variables and to the controlled voltage
(controlled variable), and the analysis of the sign of each diagonal element indicate if a
specific control action is adequate or not. The off-diagonal elements represent the
interdependence among the voltage controller equipments. The sensitivity matrix QV,
called [JSQV] is obtained from the Jacobean matrix from the linear load flow equations.
The voltage control areas recognized from the eigenvalues and eigenvectors analysis to
each sensitivity matrix are coherent. Also, voltage control areas were identified directly
from sensitivity matrixes. These areas were compared founded coherent results.
|
3 |
[pt] ANÁLISE DINÂMICA DE TRELIÇAS E PÓRTICOS TRIDIMENSIONAIS USANDO UMA TÉCNICA AVANÇADA DE SUPERPOSIÇÃO MODAL / [en] DYNAMIC ANALYSIS OF SPACE TRUSSES AND FRAMES USING AN ADVANCED MODE SUPERPOSITION TECHNIQUE09 December 2021 (has links)
[pt] O método híbrido dos elementos finitos, proposto por Pian com base no potencial de Hellinger-Reissner, estabeleceu um novo paradigma entre as formulações de discretização numérica de um problema de elasticidade. Uma proposta feita por Przemieniecki – para a análise generalizada de vibração livre de elementos de treliça e de viga – foi incorporada por Dumont aos métodos híbridos dos elementos finitos e de contorno e generalizada ainda mais para a análise de problemas dependentes do tempo em termos de um procedimento de superposição modal avançado, que se baseia na resolução de um problema não linear de autovalores e que permite levar em conta de maneira adequada condições iniciais gerais de contorno, assim como ações de domínio. O presente trabalho apresenta as principais características do desenvolvimento feito por Dumont para aplicação específica a estruturas aporticadas e investiga diversos exemplos disponíveis na literatura de dinâmica estrutural clássica para mostrar que muitos resultados apresentados são bastante imprecisos pela falta de um cuidadoso estudo de convergência. / [en] The hybrid finite element method, proposed by Pian on the basis of the Hellinger-Reissner potential, has proved itself a conceptual breakthrough among the discretization formulations. A proposition made by Przemieniecki – for the generalized free vibration analysis of truss and beam elements – was incorporated into the hybrid finite/boundary element method developed by Dumont and extended to the analysis of time-dependent problems by making use of an advanced mode superposition procedure that is based on a nonlinear eigenvalue analysis and adequately takes into account general initial conditions as well as general body actions. This work presents all the features of the formulation as applied to frame structures and assesses several examples available in the technical literature to show that remarkable improvements may be achieved – and actually should be taken into account – with the proposed formulation when compared to the classical structural dynamics.
|
4 |
[en] ANALYTICAL SOLUTION OF EIGENVALUE EQUATIONS BY GENETIC PROGRAMMING, WITH APPLICATION IN THE ANALYSIS OF ELECTROMAGNETIC PROPAGATION IN PRODUCTION PIPES OF OIL, PARAMETERIZED BY THE RADIUS AND THE PERCENTAGE OF INCRUSTATIONS / [pt] MÉTODO DE SOLUÇÃO ANALÍTICA DE EQUAÇÕES DE AUTOVALORES DE OPERADORES DIFERENCIAIS POR PROGRAMAÇÃO GENÉTICA, COM APLICAÇÃO NA ANÁLISE DE PROPAGAÇÃO ELETROMAGNÉTICA EM COLUNAS DE PRODUÇÃO DE ÓLEO PARAMETRIZADA PELO RAIO E O PERCENTUAL DE INCRUSTAÇÕESALEXANDRE ASHADE LASSANCE CUNHA 19 February 2019 (has links)
[pt] Este trabalho apresenta uma abordagem inovadora para calcular autopares de operadores diferenciais (OD), utilizando programação genética (PG) e computação simbólica. Na literatura atual, o Método dos Elementos Finitos (MEF) e o Método das Diferenças Finitas (MDF) são os mais utilizados. Tais métodos usam discretização para converter o OD em uma matriz finita e, por isso, apresentam limitações como perda de acurácia e presença de soluções espúrias. Além disso, se o domínio do OD fosse alterado, os autopares precisariam ser calculados novamente, pois a representação matricial do operador depende dos parâmetros do problema. Nesse contexto, este trabalho propõe evoluir autofunções analiticamente usando PG, sem discretização do domínio. Com isso, é possível incorporar parâmetros, o que torna a solução obtida válida para uma classe de problemas. Este texto descreve o modelo para OD normais, aplicando conceitos de indivíduos multi-árvore e diferenciação simbólica. O modelo evolui auto-funções e, a partir delas, calcula os autovalores empregando a razão de Rayleigh. Experimentos baseados em aplicações da Física mostram que a técnica proposta é capaz de encontrar as autofunções analíticas com a acurácia igual ou melhor que as técnicas numéricas supracitadas. Finalmente, a técnica proposta é aplicada ao problema de propagação de ondas eletromagnéticas em poços de petróleo em ULF e UHF. As soluções analíticas são dadas em função do diâmetro e do percentual de incrustações no poço. Os resultados mostram que, para um conjunto suficientemente grande de valores distintos dos parâmetros, a técnica apresenta tempo de execução inferior às técnicas clássicas, mantendo a acurácia destas. / [en] This work presents an innovative approach to calculate the eigenpairs of linear differential operators (LDO), employing genetic programming (GP)
and symbolic computation. In the current literature, the Finite Element Method (FEM) and the Finite Difference Method (FDM) are more commonly
used. Such methods use discretization to convert the LDO to a finite matrix, therefore causing loss of accuracy and presence of spurious solutions. Additionally, if the domain of the LDO was changed, the eigenpairs would need to be recalculated, since the matrix representation of the LDO depends on the parameters of the problem. In this context, this work proposes to evolve eigenfunctions analytically using GP, without domain discretization. Hence, it is possible to incorporate the parameter, which makes a obtained solution valid for a class of problems. This text describes the model for normal LDO, applying concepts of multi-tree individuals and symbolic differentiation. The presented model evolves eigenfunctions and, then, calculates the eigenvalues using the Rayleigh quotient. Experiments based on Physics problems show that the proposed technique is able to find the analytical eigenfunctions with the same accuracy of the numerical techniques mentioned above. Finally, the proposed technique is applied to the problem of propagation of electromagnetic waves in oil wells in ULF and UHF. The analytical solutions are given as a function of the diameter and percentage of CaCO in the well. The results show that, for a sufficiently large set of distinct values of the parameters, the technique presents execution time inferior to the FEM, while maintaining its accuracy.
|
Page generated in 0.027 seconds