1 |
[en] NUMERICAL LIMIT ANALYSIS USING SEMIDEFINITE AND SECOND ORDER CONIC PROGRAMMING WITH APPLICATION IN STABILITY OF SHALLOW TUNNELS / [pt] ANÁLISE LIMITE NUMÉRICA USANDO PROGRAMAÇÃO SEMIDEFINIDA E CÔNICA DE SEGUNDA ORDEM COM APLICAÇÃO EM ESTABILIDADE DE TÚNEIS RASOSJHONATAN EDWAR GARCIA ROJAS 18 February 2019 (has links)
[pt] Nesse trabalho é avaliada a solução numérica do colapso na frente de escavação em túneis rasos, através da teoria de análise limite numérico, usando o teorema do limite inferior, a partir da condição de equilíbrio para as condições plásticas, além de considerar o comportamento do material rígido perfeitamente plástico. O teorema de limite inferior implica em maximizar o fator multiplicador na carga atuante, por isso a análise limite se torna um problema de otimização, nele tem que se usar a programação matemática para ser resolvido. É avaliada a solução numérica tridimensional da análise limite através do método dos elementos finitos, usando malha de elementos hexaédricos de oito nós, a análise dos elementos finitos é feita com o próprio código gerado na linguagem de programação do MATLAB 2017.As metodologias de programação matemática empregadas são: programação cônica de segunda ordem e programação semidefinida. Antes deve-se adaptar os critérios de ruptura de Drucker Prager à programação cônica de segunda ordem e Mohr-Coulomb tridimensional à programação semidefinida. Para a otimização se usa o algoritmo comercial MOSEK Aps 7.1 baseado no método do ponto interior em grande escala, na linguagem do MATLAB 2017. Além disso, obteve-se o mecanismo de colapso através da propriedade da dualidade do problema de otimização, dualidade que é cumprida pelos teoremas de limite superior e inferior. / [en] In this work the numerical solution of the collapse in the front of excavation in shallow tunnels is evaluated through the theory of numerical limit analysis, using the lower limit theorem, from the equilibrium condition for the plastic conditions, considering the behavior of the perfectly plastic rigid material. The lower limit theorem implies maximizing the multiplier factor in the acting load, so that the limit analysis becomes an optimization problem. The three-dimensional numerical solution of the limit analysis using the finite element method is evaluated using a mesh of eight-node hexahedral elements. The finite element analysis is done using the code generated in the MATLAB 2017 programming language. The mathematical programming methodologies used are: second order conic programming and semidefinite programming. The Drucker-Prager three-dimensional criteria should be adapted to the conic programming of the second order and Mohr-Coulomb three-dimensional to the semidefinite programming. For the optimization, the MOSEK Aps 7.1 commercial algorithm based on the large-scale interior point method is used in the MATLAB 2017 language. In addition, the collapse mechanism was obtained through the duality property of the optimization problem, duality that is fulfilled by the upper and lower limit theorems.
|
2 |
[pt] ANÁLISE LIMITE NUMÉRICA DE PROBLEMAS AXISSIMÉTRICOS EM GEOTECNIA / [en] NUMERICAL LIMIT ANALYSIS OF AXISYMMETRIC PROBLEMS IN GEOTECHNICAL ENGINEERINGDAVID SEBASTIAN CALPA JUAJINOY 24 September 2021 (has links)
[pt] Este trabalho de dissertação de mestrado apresenta a implementação da análise limite numérica com formulação mista-fraca, baseada no teorema do límite inferior, e sua aplicação em problemas de estabilidade axissimétricos. Aformulação com elementos finitos foi implementada no software
Matlab, onde se estabelece o problema de otimização que compreende a definição da equação de equilibrio e a adaptação dos criterios de ruptura de Drucker-Prager e Mohr-Coulomb às programações cônica
de segunda ordem e semidefinida, respectivamente, e que posteriormente é resolvido com o algoritmo Mosek Aps 9.2. Como resultado do problema de otimização o fator de colapso e o campo de velocidades podem ser obtidos, permitindo identificar o mecanismo de ruptura. O presente trabalho
foca-se na análise de estabilidade de um poço que é executada em 3 fases, em função das condições consideradas no modelo. Os resultados obtidos da análise axissimétrica foram validados mediante analises em modelos tridimensionais e comparados com resultados dos softwares Plaxis 2D e
Optum G2, também foram incluídos os resultados da modelagem MPM, com o sotware MPM-PUCRio. Por fim foi estudado o caso da capacidade de carga de uma fundação circular rasa, cujos resultados foram comparados com os apresentados por outros autores. / [en] This work dissertation presents the implementation of numerical limit analysis with mixed-weak formulation, based on the the lower bound limit theorem and its application in axisymmetric stability problems. The finite element formulation was implemented in Matlab, where the optimization problem is established, which comprises the definition of the equilibrium equation and the adaptation of the Drucker-Prager and Mohr-Coulomb rupture criteria to the second-order cone programming and semidefined programming, respectively, and which is later solved with the Mosek Aps 9.2 algorithm. As a result of the optimization problem, the collapse factor and the speed field can be obtained, allowing to
identify the rupture mechanism.The present work focuses on the stability analysis of a well that is carried out in 3 phases, depending on the conditions considered in the model. The results obtained in the axissymmetric analysis were validated through analysis in three-dimensional models and compared with results of plaxis 2D and Optum G2 software, also included the results of MPM modeling, with the software MPM-PUCRio. Finally, the case of the load capacity of a shallow circular foundation is studied, the results of which are compared with those presented by other authors.
|
Page generated in 0.031 seconds