1 |
[en] NUMERICAL ANALYSIS OF AMBROSETTI-PRODI TYPE OPERATORS / [pt] ANÁLISE NUMÉRICA DE OPERADORES DO TIPO AMBROSETTI-PRODIJOSE TEIXEIRA CAL NETO 14 May 2019 (has links)
[pt] Berger e Podolak apresentaram uma interpretação geométrica do resultado seminal de Ambrosetti e Prodi sobre o comportamento das soluções de certas equações diferenciais parciais elípticas semi-lineares. Consideram-se extensões deste ponto de vista, a partir das quais se desenvolve um algoritmo numérico para resolver as equações. / [en] Berger and Podolak obtained a geometric interpretation of the seminal result of Ambrosetti and Prodi regarding the behavior of solutions of certain semilinear elliptic partial differential equations. We consider extensions of such interpretation to develop a stable numerical algorithm that solves the equations.
|
2 |
[pt] DESIGUALDADE DE HARNACK E ESTIMATIVAS DE HOLDER PARA EQUAÇÕES ELÍPTICAS DE SEGUNDA ORDEM / [en] HARNACK S INEQUALITY AND HOLDER ESTIMATES FOR SECOND ORDER ELLIPTICAL EQUATIONS09 August 2021 (has links)
[pt] O objetivo principal desta dissertação é estudar a desigualdade de Harnack e as estimativas de Holder, para um operador elíptico de segunda ordem, na forma não divergente e na forma divergente, respectivamente, sendo os coeficientes funções mensuráveis e limitadas em um domínio ômega contido em Rn. / [en] The main objective of this dissertation is to study Harnack s inequality
and Holder s estimates for a second-order elliptic operator, written in the non-divergent form and in the divergent form, respectively, where the coefficient functions are measurable and bounded functions in a domain omega contained in Rn.
|
Page generated in 0.0439 seconds