11 |
[en] ANALYSIS OF THE EFFECT OF DROPLET SIZE DISTRIBUTION ON THE STABILITY OF WATER-INOIL EMULSIONS / [pt] ANÁLISE DO EFEITO DA DISTRIBUIÇÃO DO TAMANHO DE GOTAS NA ESTABILIDADE DE EMULSÕES ÁGUA EM ÓLEOCAROLINE OLIVEIRA PAES DE BARROS 28 September 2021 (has links)
[pt] Com as novas regulamentações ambientais proibindo o uso de fluidos de perfuração que apresentassem em sua composição elementos como óleo diesel, se fez necessário a busca por novos componentes que, além de serem eficazes em sua função, apresentassem característica de biodegradabilidade sendo, assim,
menos danoso ao meio ambiente. A base do fluido de perfuração escolhida para se enquadrar as novas regras foi estudada neste trabalho com objetivo de avaliar a sua estabilidade e o seu comportamento reológico. O fluido trabalhado é uma emulsão inversa cuja fase contínua é a olefina e a fase dispersa, salmoura de NaCl, acrescido de um emulsificante primário, Cybermul, e um secundário, Cyberplus. Para retardar o processo de desestabilização, majoritariamente caracterizado pela sedimentação, em um segundo momento, foi adicionada a cal hidratada. Os testes realizados foram divididos em duas etapas: a primeira avaliando emulsões preparadas a 5000 rpm, 7500 rpm e 10000 rpm sem cal em sua composição e a segunda avaliando emulsões preparadas com a mesma velocidade de rotação, entretanto com cal hidratada. A principal variável adotada foi a velocidade de rotação com objetivo de ratificar o conhecimento
de que quanto maior a velocidade de agitação durante a emulsificação, menores são as gotas geradas e, consequentemente, mais estável a emulsão. Os testes foram compostos por tensão interfacial, bottle test, distribuição do tamanho de gotas (microscopia e espalhamento dinâmico de luz) e testes de comportamento reológico, que incluem, tensão constante, curva de escoamento e varredura de
tensão e tempo. Os resultados obtidos permitiram relacionar o tamanho das gotas geradas com a estabilidade da emulsão e com a sua viscosidade. / [en] Since new environmental regulations were established prohibiting the use of drilling fluids that had elements such as diesel in their composition, it was necessary to search for new components that, besides being effective in their function, had a biodegradability characteristic, thus being less harmful
to the environment. The base of the drilling fluid chosen to fit the new rules was studied in this thesis in order to characterize its stability and rheological behavior. The fluid used is an inverse emulsion whose continuous phase is the olefin and the dispersed phase, brine, plus a primary emulsifier, Cybermul,
and a secondary one, Cyberplus. To delay the destabilization process, mainly characterized by sedimentation, in a second moment, hydrated lime was added to the emulsion s composition. The tests performed were divided into two stages: the first, emulsions prepared at 5000 rpm, 7500 rpm and 10,000 rpm without lime in their composition were analyzed and the second, emulsions prepared at the same rotation velocities however with hydrated lime in their composition. The main variable adopted was the speed of rotation in order to confirm the knowledge that the higher is the speed of agitation during
emulsification, the smaller are the drops generated and, consequently, the more stable is the emulsion. The tests consisted of interfacial tension, bottle test, droplet size distribution (microscopy and dynamic light scattering) and rheological behavior tests, which include, creep tests, flow curve and stress and
time sweep tests. The results obtained allowed to relate the size of the drops with the emulsion s stability and with its viscosity.
|
12 |
[en] FLOW SIMULATION OF MACRO-EMULSION FLOODING AT STRATIFIED RESERVOIRS CONSIDERING CAPILLARY EFFECTS / [pt] SIMULAÇÃO DA INJEÇÃO ALTERNADA DE ÁGUA-EMULSÃO-ÁGUA CONSIDERANDO EFEITOS CAPILARES EM MODELOS DE RESERVATÓRIOS ESTRATIFICADOSHELENA ASSAF TEIXEIRA DE SOUZA MOTA LIMA 12 December 2016 (has links)
[pt] O aumento do fator de recuperação e o uso de métodos de recuperação avançada no atual cenário de novos patamares de preços representam um enorme desafio para a indústria do petróleo. Neste contexto, o uso de emulsões óleo-água como um método de recuperação avançada torna-se bastante atrativo. Diversos trabalhos mostraram um aumento no volume de óleo produzido através da injeção de emulsões óleo-água. Resultados de pesquisas experimentais indicam que a injeção de emulsões pode ser utilizada como agente de controle de mobilidade, bem como reduzindo a saturação residual de óleo. A aplicação do método de injeção alternada água-emulsão-água (WAE) requer o entendimento do escoamento de emulsões no meio poroso e dos mecanismos responsáveis pela melhora na recuperação. Este entendimento tanto na escala de poros como na escala de reservatórios permite incorporação destes mecanismos na modelagem para simulação de fluxo de reservatórios. No presente trabalho foi feita a incorporação dos efeitos gravitacionais no modelo desenvolvido para o escoamento de emulsões em meios porosos através da parametrização das curvas de permeabilidade relativa em função da concentração de gotas e do Número de Capilaridade. O processo WAE foi avaliado através de simulações em duas e três dimensões (2D/3D) utilizando um conjunto de camadas do segundo modelo comparativo do SPE10. Com simulações 2D e 3D foi possível realizar um estudo de sensibilidade do processo em relação ao momento da injeção de emulsão, o tamanho do banco, e as faixas de vazão e respectivos números de capilaridades de atuação da emulsão. / [en] In the current crude oil price scenario, the increase in oil recovery factor and the use of enhanced recovery methods represent a major challenge for the Oil Industry. In this context, the use of oil-water emulsion flooding as an enhanced recovery method becomes very attractive. Several studies have shown a significant potential to increase oil volume recovery by the injection of oil-water emulsions. Experimental results indicate that the emulsions injection can be used as a mobility control agent, resulting in a more uniform fluid displacement in the reservoir and lower residual oil saturation. Based on these experimental results, the most relevant parameters for emulsion injection performance effectiveness are droplet size, the local concentration of the dispersed phase of the emulsion and the local capillary number. The application of water alternating emulsion injection (WAE) method requires understanding of the flow of emulsions in porous media and the mechanisms responsible for the improved recovery. The understanding of this process in both porous scale and reservoir scale is fundamental to model emulsion injection effects in reservoir flow simulation. In this work, the gravitational effects was incorporated in the macroscopic model to represent flow of emulsions in porous media by relative permeability curves parametrization as function of emulsion concentration and of the local capillary number. The WAE process was evaluated in two and three dimensional simulations (2D / 3D) using a set of layers of the second SPE 10 comparative model. With 2D and 3D simulations, it was possible to explore a WAE injection performance sensitivity analysis considering the time at which the emulsion injection is started, the size of emulsion bank, and the injection flow rates and consequently the flow their capillary number.
|
13 |
[pt] DESENVOLVIMENTO DE EMULSÕES ÓLEO EM ÁGUA ESTABILIZADAS POR MATERIAIS SUSTENTÁVEIS PARA LIBERAÇÃO CONTROLADA DE N, N -DIETIL-3-METILBENZAMIDA (DEET)) / [en] DEVELOPMENT OF OIL-IN-WATER EMULSIONS STABILIZED BY SUSTAINABLE MATERIALS FOR CONTROLLED RELEASE OF N, N -DIETHYL-3- METHYLBENZAMIDE (DEET)LUIS MIGUEL GUTIERREZ BELENO 27 June 2024 (has links)
[pt] Os mosquitos são os principais vetores de transmissão de doenças como zika,
dengue e chikungunya, causando mais de 700 mil casos por ano. O uso de repelentes,
principalmente formulações tópicas, é uma das melhores medidas de proteção para
reduzir e/ou prevenir a transmissão de muitas doenças transmitidas por insetos. Neste
trabalho, formulamos emulsões de DEET/óleo em água para liberação controlada de
repelentes como estratégia para desenvolver formulações repelentes com tempo de
proteção superior a 6 h. Investigamos os efeitos do valor de HLB na estabilidade e
viscosidade das emulsões, usando uma mistura de surfactantes (Span 80 e Tween 80)
para formular emulsões em uma faixa de HLB entre 4-14. Também avaliamos o
tamanho das gotas, comportamento reológico, método de mistura e índice de
estabilidade da emulsão. As emulsões de DEET-óleo-em-água desenvolvidas
contendo N, N-dietil-3-metilbenzamida (DEET) foram estabilizadas usando dois
nanomateriais carregados negative e positivamente, nanopartículas de sílica (SiNP) e
nanofibrilas de celulose catiônica (CCNF), e uma mistura de surfactantes não iônicos
de grau para evitar a precipitação por agregação eletrostática. Os resultados indicam
que no HLB 10, esta mistura pode estabilizar as emulsões independentemente do tipo
de óleo (mineral ou vegetal), e as emulsões apresentam comportamento newtoniano
independentemente do método de mistura. As formulações foram estáveis por mais de
quatro meses à temperatura ambiente, mostrando-se fortemente resistentes à
desestabilização por estresse centrífugo e térmico quando se utiliza nanomateriais em
combinação com surfactantes. O CCNF e o SiNP mantiveram a distribuição
granulométrica estável devido ao aumento da viscosidade da fase contínua. A ação
combinada desses materiais na estabilização da fase oleosa contendo DEET diminuiu
significativamente a taxa de liberação do composto ativo em comparação com o DEET
não emulsificado, produzindo uma liberação sustentada de DEET nas primeiras 6 h. / [en] Mosquitoes are the main vectors of transmission of diseases such as zika, dengue and
chikungunya, causing more than 700,000 cases per year. The use of repellents, mainly
topical formulations, is one of the best protective measures to reduce and/or prevent
the transmission of many insect-borne diseases. In this work, we formulated DEET/oil-in-water emulsions for the controlled release of repellents as a strategy to develop
repellent formulations with a protection time greater than 6 h. We investigated the
effects of the HLB value on the stability and viscosity of the emulsions, using a blend
of surfactants (Span 80 and Tween 80) to formulate emulsions in an HLB range
between 4-14. We also evaluated droplet size, rheological behavior, mixing method
and emulsion stability index. The developed DEET-oil-in-water emulsions containing
N, N-diethyl-3-methylbenzamide (DEET) were stabilized using two positively and
negative charged nanomaterials, silica nanoparticles (SiNP) and cationic cellulose
nanofibrils (CCNF), and a blend of food-grade nonionic surfactants to prevent
precipitation by electrostatic aggregation. The results indicate that at HLB 10, this
mixture can stabilize the emulsions regardless of the type of oil (mineral or vegetable),
and the emulsions present Newtonian behavior regardless of the mixing method. The
formulations were stable for more than four months at room temperature, showing to
be strongly resistant to destabilization by centrifugal and thermal stress when using
nanomaterials in combination with surfactants. The CCNF and SiNP kept the droplet
size distribution stable due to the increase in the viscosity of the continuous phase. The
combined action of these materials in stabilizing the DEET-containing oil phase
significantly decreased the rate of active compound release compared to non-emulsified DEET, producing a sustained release of DEET within the first 6 h.
|
14 |
[pt] DESLOCAMENTO DE ÓLEO EM UM MEIO POROSO ATRAVÉS DE INJEÇÃO DE EMULSÕES ÓLEO-EM-ÁGUA: ANÁLISE DE FLUXO LINEAR / [en] OIL DISPLACEMENT IN A POROUS MEDIA THROUGH INJECTION OF OIL-IN-WATER EMULSION: ANALYSIS OF LINEAR FLOWVICTOR RAUL GUILLEN NUNEZ 27 September 2007 (has links)
[pt] A injeção de emulsão é um método comum para melhorar o
varrido do reservatório e manter-lo pressurizado. A
eficiência de
recuperação de óleo no
caso de óleos pesados é limitada pela alta razão de
mobilidade entre a água
injetada e o óleo. Um método de reduzir o problema
relativo µa alta razão de
viscosidade é por injeção de soluções poliméricas. Porem,
a interação líquido-
rocha, os grandes volumes e o preço associado dos
polímeros podem fazer
esta técnica não aplicável em caso de campos gigantes.
Diferentes métodos
de recuperação avançada de óleo estão sendo desenvolvidos
como alternativas µa injeção de polímeros. A injeção de
dispersões, em particular a injeção
de emulsões, têm sido tratadas com relativo sucesso como
um método de
recuperação avançada de óleo, mas as técnicas não são
totalmente desenvolvidas ou compreendidas. O uso de cada
método requer uma completa
análise dos diferentes regimes de fluxo de emulsões dentro
do espaço poroso de um reservatório. A maioria das
análises de fluxo de emulsões em
um meio poroso utiliza uma descrição macroscópica. Esta
aproximãção é
só valida para emulsões com o tamanho da fase dispersa
muito menor do
que o tamanho do poro. Se o tamanho de gota da fase
dispersa é da mesma
ordem de magnitude do tamanho de poro, as gotas podem
aglomera-se e
particularmente podem bloquear o fluxo através dos poros.
Este regime de
fluxo pode ser utilizado para controlar a mobilidade do
líquido injetado,
conduzindo a um fator de recuperação maior. Neste
trabalho, experimentos de deslocamento de óleo foram
executados em
um corpo de prova de arenito. Os resultados mostram que a
injeção de uma
emulsão mudou o fator de recuperação de óleo, elevando
este desde 40%,
obtido só por injeção de água, ate um valor aproximado de
75%, seja em
modo primario ou depois do influxo da água. / [en] Water injection is a common method to improve the
reservoir sweep and
maintain its pressure. The e±ciency of oil recovery in the
case of heavy oils
is limited by the high mobility ratio between the injected
water and oil.
A method of reducing the problem related to the high
viscosity ratio is by
polymer solution injection. However, the liquid-rock
interaction, the large
volume and the associated cost of polymer may make this
technique not
applicable in the case of giant fields. Different enhanced
oil recovery methods
are being developed and studied as alternatives to polymer
injection.
Dispersion injection, in particular oil-water emulsion
injection, has been
tried with relative success as an enhanced oil recovery
method, but the
techniques are not fully developed or understood. The use
of such methods
requires a complete analysis of the different flow regimes
of emulsions inside
the porous space of a reservoir. Most analyses of flow of
emulsion in a
porous media use a macroscopic description. This approach
is only valid
for dilute emulsion which the size of the disperse phase
is much smaller of
the pore throat. If the drop size of the disperse phase is
of the same order
of magnitude of the pore size, the drops may agglomerate
and partially
block the flow through pores. This flow regime may be used
to control the
mobility of the injected liquid, leading to higher
recovery factor. In this
work, experiments of oil displacement were performed in a
sandstone plug.
The results show that injection of an emulsion changed the
oil recovery
factor, raising it from approximately 40%, obtained with
water injection
alone, to approximately 75%, whether in primary mode or
after water
flooding.
|
15 |
[pt] MECANISMOS EM ESCALA DE POROS DE DESLOCAMENTO DE ÓLEO POR INJEÇÃO DE EMULSÃO / [en] PORE-SCALE MECHANISMS OF OIL DISPLACEMENT BY EMULSION INJECTIONCLARICE DE AMORIM 21 November 2024 (has links)
[pt] A injeção de água é o método mais utilizado para estender a vida produtiva de
reservatórios de petróleo. No entanto, sua eficiência é limitada pela relação de
mobilidade desfavorável entre a fase aquosa injetada e a fase oleosa deslocada.
A heterogeneidade das formações agrava essa questão, direcionando a água
através de caminhos preferenciais, resultando na retenção de óleo residual.
Estudos recentes propõem emulsões de óleo-em-água como agentes de bloqueio
para reduzir a mobilidade da fase aquosa. A redução da mobilidade associada
à captura de gotas da fase dispersa leva a uma frente de deslocamento mais
uniforme, aumentando a recuperação de óleo. Apesar dos avanços recentes
na injeção de emulsões como método de recuperação avançada de petróleo
(EOR), aspectos fundamentais do escoamento de emulsões óleo-em-água a
nível microscópico e sua relação com a redução macroscópica na mobilidade
da fase aquosa ainda necessitam de maior compreensão. Este estudo explora
fatores que influenciam a eficácia de um processo de injeção de emulsão,
incluindo o tamanho das gotas, a distribuição das gargantas de poros e a
vazão de injeção, que influenciam diretamente na redução da mobilidade.
Micromodelos bidimensionais foram empregados para visualizar a dinâmica
de retenção e liberação de gotas, relacionando fenômenos em escala de poros
à mobilidade da fase aquosa. Duas geometrias foram projetadas para este
propósito. O micromodelo linear assegura um gradiente de pressão e uma
velocidade constante ao longo de seu comprimento, enquanto a configuração
radial avalia o desempenho da injeção de emulsão sob diferentes números de
capilaridade. Nesta última configuração, a área de fluxo aumenta com o raio,
reduzindo a velocidade do escoamento à medida que o fluido se afasta do
ponto de injeção. Os resultados mostram que a redução da mobilidade pode
ser controlada pelo número de capilaridade e pela distribuição do tamanho
de gotas. Em números de capilaridade suficientemente altos, a diferença de
pressão na maioria das gargantas de poro supera a pressão capilar, empurrando
as gotas através das constrições. Nestes casos, a retenção de gotas é baixa e a
redução da mobilidade é fraca. Por outro lado, em números de capilaridade
baixos, a retenção de gotas é alta, causando uma redução significativa na
mobilidade da fase aquosa, que é fortemente dependente da distribuição do
tamanho de gotas. Além disso, no fluxo radial, o bloqueio de poros ocorre
abaixo de um número de capilaridade crítico, onde a força capilar supera a
pressão viscosa. O trabalho demonstra que a injeção de emulsão melhora a
eficiência de deslocamento a nível microscópico, reduzindo a saturação residual
de óleo. Os resultados podem orientar a seleção de características específicas
de emulsões a serem injetadas em reservatórios com distribuições conhecidas
de gargantas de poros, visando alcançar a necessária redução na mobilidade
da fase aquosa e, consequentemente, incrementar a recuperação de óleo. / [en] Water injection is the most commonly used method for extending the productive life of oil reservoirs; however, its efficiency is limited by an unfavorable
mobility ratio between the injected aqueous phase and the displaced oil phase.
Reservoir heterogeneity exacerbates this issue, driving water through preferential flow paths with lower capillary resistance, leaving trapped oil behind.
Recent studies propose oil-in-water emulsions as a pore-blocking agent to reduce aqueous phase mobility, leading to a more uniform displacement front
and enhancing oil recovery. Despite recent developments in emulsion injection for enhanced oil recovery (EOR), fundamental aspects of the pore-scale
dynamics of oil-in-water emulsion flow and its correlation with observed macroscopic mobility reduction remain not completely understood. This study
explores key factors influencing the design of an effective emulsion injection
process, including emulsion drop size, pore throat distribution, and injection
flow rate, and their impact on the mobility reduction of the aqueous phase.
Two-dimensional porous media micromodels were employed to visualize drop
dynamics, examining how pore-scale phenomena affect aqueous phase mobility
reduction. Two distinct geometries were designed for this purpose. The linear
micromodel ensures a constant pressure gradient and flow velocity along its
length, while the radial configuration assesses emulsion flooding performance
under varying capillary numbers. In the latter configuration, the flow area increases with the radius, reducing the flow velocity as the fluid moves away
from the injection point. Results show that mobility reduction can be finely
controlled by the capillary number and the drop size distribution. At sufficiently high capillary numbers, the pressure difference in most pores is strong
enough to overcome the capillary pressure needed to push a drop through the
constriction; the number of trapped drops is relatively small, and mobility reduction is weak. Conversely, at low capillary numbers, the number of trapped
drops is large; the mobility reduction is strong and dependent on the drop size
distribution. Additionally, in radial flow, stronger pore-blocking occurs below
a critical capillary number, where capillary resistance surpasses viscous pressure. Flow visualization demonstrates that emulsion flooding improves pore-level displacement efficiency, reducing residual oil saturation. These findings
offer valuable insights into tailoring oil-in-water emulsions for injection into
reservoirs with known pore throat distributions, aiming to achieve the necessary aqueous phase mobility reduction and consequently increase oil recovery
factors.
|
16 |
[pt] ESCOAMENTO DE DUAS GOTAS ATRAVÉS DE UM MICRO CAPILAR RETO / [en] FLOW OF TWO DROPS THROUGH A STRAIGHT MICROCAPILLARYBRUNO NIECKELE AZEVEDO 08 October 2014 (has links)
[pt] Emulsões podem ser usadas como agentes de controle de mobilidade em métodos de recuperação avançada de óleo de forma a conseguir um varrido mais eficiente do reservatório. A aplicação de tal técnica requer um entendimento completo de como as emulsões escoam em um material poroso. O comportamento macroscópico do escoamento deve ser determinado baseado no escoamento na escala de poros, em que as emulsões não podem ser tratadas como líquidos não Newtonianos monofásicos, uma vez que os diâmetros das gotas são da mesma ordem de magnitude das gargantas de poros. Experimentos realizados por Cobos et al.(1) sobre o escoamento de emulsões através de micro-capilares com garganta, que serviu como modelo para a geometria de uma garganta de poro conectando dois poros adjacentes, mostrou o efeito da fase dispersa na queda de pressão para diferentes condições de escoamento e características das emulsõs. De forma a ampliar a faixa de número de capilaridade e tamanhos de gota explorados nos experimentos, determinar o efeito da tensão interfacial, razão de viscosidades, geometria do capilar e determinar características do escoamento com mais de uma gota, é estudado o escoamento de gotas suspensas em uma fase contínua escoando através de um micro-capilar. A evolução da interface das
gotas é determinada pelo método de level-set, que é acoplado a solução das equações de Navier Stokes, baseada no método de elementos finitos. Foi investigado o efeito da distância inicial entre duas gotas, assim como o efeito da tensão interfacial na velocidade de cada uma das gotas. Os resultados obtidos fornecem uma descrição mais detalhada do escoamento de emulsões em gargantas de poros. / [en] Emulsions can be used as mobility control agent in enhanced oil recovery methods in order to achieve a more efficient sweep of the reservoir. The application of such technique requires full understanding of how emulsions flow in a porous material. The macroscopic flow behavior can be determined based on the pore scale flow, at which emulsions cannot be treated as a single phase non Newtonian liquid, since the drop diameters are in the same order of magnitude of the pore throats. Experiments by Cobos et al.(1) of
flow of emulsions through constricted micro capillaries, wich served as a model to the geometry of a pore throat connecting two adjacent pore bodies, have shown the effect of the dispersed phase on the pressure drop for different flow conditions and emulsions characteristics. In order to widen the range of capillary number and drop size explored in the experiments and to determine the effect of interfacial tension, viscosity ratio, capillary geometry and determine the characteristics of the flow with more the one drop, we study the flow of a drops suspended in a continuous phase flowing through a constricted micro capillary. The evolution of the drop interface is determined by the level set method which is incorporated to a fully coupled implicit Navier Stokes solver based finite element method. We investigate the effect of an initial distance between the two drops, as well as the effects of the interfacial tension on the drops speed. The results provide a more detailed description of the flow of emulsions through pore throats.
|
Page generated in 0.0348 seconds