• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] SYNTHESIS OF PLURONIC F-127 FUNCTIONALIZED IRON OXIDE NANOPARTICLES CHARACTERIZED BY SCANNING MAGNETIC MICROSCOPY / [pt] SÍNTESE DE NANOPARTÍCULAS DE ÓXIDO DE FERRO FUNCIONALIZADAS COM PLURONIC F-127 CARACTERIZADAS POR MICROSCOPIA MAGNÉTICA DE VARRE DURA

FREDERICO VIEIRA GUTIERREZ 28 April 2022 (has links)
[pt] As nanopartículas magnéticas (NPMs) apresentam grande potencial em diversas aplicações tecnológicas e vem ganhando destaque na área da biomedicina devido suas propriedades superparamagnéticas. Para este trabalho foram sintetizadas nanopartículas de óxido de ferro (Fe3O4) pelo método de coprecipitação e recobertas com Pluronic F-127 (PL F-127), o qual se demonstrou, a partir de estudos anteriores, um surfactante com ótima estabilidade coloidal e alto grau de biocompatibilidade, sendo tais características relevantes para as aplicações na área da biomedicina. O método de produção se mostrou eficiente para produção de uma grande quantidade de amostra e baixo grau de oxidação, o que mantém a integridade dos resultados e do material para diversas análises no decorrer de longos períodos. A espectroscopia Raman e a difração de elétrons apontam para a composição majoritária de magnetita cristalina das amostras. As imagens obtidas através de microscopia de transmissão (MET) mostraram que o diâmetro médio das NPMs não é afetado pela concentração PL F-127 e está de acordo com os tamanhos obtidos pelas técnicas magnéticas. O MET também mostrou partículas monodispersas com formato esféricas. As técnicas de microscopia magnética de varredura (MMV), magnetômetro de amostra vibrante e de efeito Hall revelaram que o comportamento das NPMs é superparamagnético em temperatura ambiente e que a funcionalização não interferiu significativamente na magnetização de saturação. / [en] Magnetic nanoparticles (MNPs) have great potential in several technological applications and are gaining prominence in the biomedical area due to their superparamagnetic properties. For this work, iron oxide (Fe3O4) nanoparticles were synthesized by the coprecipitation method and coated with Pluronic F-127 (PL F127), which was demonstrated, from previus studies, a surfactante with excellent coloidal stability and high degree of biocompatibility, such characteristics being relevant for applications in the área of biomedicine. The production method proved to be efficient for producing a large amount of sample and a low degree of oxidation, which maintains the integrity of the results and material for several analyzes over long periods. Raman spectroscopy and eléctron diffraction indicate the samples are pure and crystalline magnetite. The images obtained through transmission eléctron microscopy (TEM) showed that the mean diameter of MNPs is not affected by the PL F-127 concentration and is in agreement with the sizes obtained by magnetic techniques. TEM also showed monodisperse particles with a spherical shape. Scanning magnetic microscopy (MMV), vibrating sample magnetometer and Hall effect techniques revealed that the behavior of NPMs is superparamagnetic at ambient temperature and that the functionalization did not significantly interfere in the saturation magnetization.
2

[pt] CONSTRUÇÃO DE UM MAGNETÔMETRO HALL A BAIXAS TEMPERATURAS PARA CARACTERIZAÇÃO DE NANOPARTÍCULAS MAGNÉTICAS / [en] LOW-TEMPERATURE HALL MAGNETOMETER FOR MAGNETIC NANOPARTICLE CHARACTERIZATION

06 December 2021 (has links)
[pt] Nanopartículas são importantes ferramentas utilizadas em medicina, tanto para diagnóstico como para tratamento de diversas doenças. Seus tamanhos podem ser controlados, variando de dezenas até centenas de nanômetros, tornando-as menores ou comparáveis às dimensões de células, bactérias e vírus. As nanopartículas magnéticas possuem um núcleo de material magnético recoberto por camadas de diferentes materiais, incluindo sílica ou um polímero. Esta cobertura é responsável pela funcionalização, de forma que elas realizem tarefas específicas, seja para funcionar como um marcador com fins diagnósticos e/ou como um transportador de fármacos. É muito importante no processo de fabricação e utilização das nanopartículas o conhecimento de suas propriedades magnéticas. Com este objetivo, construímos um magnetômetro baseado em um criorefrigerador com capacidade para medir propriedades magnéticas em função da temperatura desde ambiente até 6 K. Como sensor magnético utilizamos um elemento Hall de GaAs de baixo custo. O magnetômetro construído tem uma configuração diferente dos magnetômetros Hall tradicionais, já que neste caso a amostra se movimenta na região do sensor. De forma a aumentar a exatidão do momento magnético obtido, foi desenvolvido um modelo que leva em consideração a geometria da amostra. A resolução está limitada pelo sensor utilizado em 10-7 Am2. O magnetômetro foi calibrado de forma independente e seu desempenho foi comparado a magnetômetros de amostra vibrante (VSM) comerciais, apresentando erros menores que 2 porcento na magnetização obtida de diversas amostras. Todos os equipamentos envolvidos na operação do magnetômetro a baixas temperaturas são controlados utilizando a linguagem LabVIEW. Na versão atual do programa, curvas M x H e ZFC-FC podem ser obtidas. Como exemplo de aplicação, fabricamos nanopartículas magnéticas com núcleo de oxido de ferro pelo processo de coprecipitação em meio alcalino e recobrimos com surfactantes e SiO2. As propriedades magnéticas das nanopartículas foram obtidas utilizando o magnetômetro construído. As nanopartículas apresentaram comportamento superparamagnético e grande potencial para liberação controlada de drogas. / [en] Nanoparticles are important tools used in medicine, for diagnosis as well as for treatment of various diseases. Their sizes can be controlled, ranging from tens to hundreds of nanometers, enabling them to interact with cells, bacteria, and viruses. Magnetic nanoparticles have a core of magnetic material coated with layers of different materials, including silica or a polymer. This coating is responsible for their functionalization, so they can carry out specific tasks serving as a marker for diagnostic purposes and / or as a carrier for drugs. The knowledge of the magnetic properties of nanoparticles is very important in the manufacturing process and their use. With this aim, we built a magnetometer based on a cryorefrigerator capable of measuring their magnetic properties as a function of temperature from room temperature to 6 K. We used a low cost GaAs Hall element as its magnetic sensor. The magnetometer built has a different configuration from the traditional Hall magnetometers, since in this case the sample moves in the region of the sensor. A model which takes into consideration the geometry of the sample was developed in order to increase the accuracy of the magnetic moment obtained. The magnetometer resolution is limited by the Hall sensor used in 10-7 Am2. The magnetometer was calibrated independently and its performance was compared to commercial vibrating sample magnetometers (VSM) showing errors smaller than 2 percent in the magnetization obtained from various samples. All the equipment involved in the operation of magnetometers at low temperatures is controlled by using the LabVIEW language. The M x H e ZFC-FC curves can be obtained in the current version. We manufactured the core with magnetic nanoparticles of iron oxide by coprecipitation process in an alkaline medium, coated with surfactants and SiO2. The magnetic properties of the nanoparticles were obtained using the magnetometer built. The nanoparticles showed superparamagnetic behavior and great potential for controlled drug release.
3

[pt] ABLAÇÃO POR LASER PULSADO DE ALVOS DE FERRO E NÍQUEL EM ÁGUA E SUAS IMPLICAÇÕES EM ASTROQUÍMICA / [en] PULSED LASER ABLATION OF IRON AND NICKEL TARGETS IN WATER AND ITS IMPLICATIONS IN ASTROCHEMISTRY

JOAO GABRIEL GIESBRECHT F PAIVA 02 December 2021 (has links)
[pt] A pesquisa aponta para a possibilidade de realizar a reação de redução de CO2 (CO2RR) para a formação de nanomateriais de carbono por ablação a laser pulsado(PLA) de alvos magnéticos de Ferro(Fe) e Níquel(Ni) em água pura deionizada. Os materiais coloidais sintetizados foram caracterizados por diferentes técnicas de espectroscopias ópticas (UVVis, ICP-MS, FTIR e Raman) e microscopia eletrônica de transmissão (TEM), revelando a presença de nanopartículas de óxidos e hidróxidos de metais de transição, junto com nanomaterial orgânico. Esse último, é bem visível por TEM, espectroscopia de raio-X por dispersão em energia (EDS), espectroscopia por perda de energia de elétrons (EELS), e espectroscopia Raman, que indica a presença de carbono amorfo grafítico e vibrações CH. No caso do nanomaterial obtido do Níquel, os resultados FTIR confirmam a presença da fase do hidróxido beta-Ni(OH)2, enquanto as medidas Raman e TEM sugerem também a presença de nano-folhas de Ni(HCO3)2. Os resultados experimentais foram enfim discutidos no contexto da origem e da evolução de moléculas simples e complexas de interesse astroquímico, com foco especial nas espécies potencialmente formadas na superfície de pequenos corpos metálicos do Sistema Solar e grãos de poeira cósmica do meio interestelar. / [en] The proposed research points to the possibility to perform CO2 reduction reaction (CO2RR) to solid carbon nanomaterials by the pulsed laser ablation (PLA) of magnetic target of iron (Fe) and nickel (Ni) in pure deionized water. The synthesized colloidal dispersions were characterized by different optical spectroscopies (UV-Vis, ICP-MS, FTIR and Raman) and transmission electron microscopy (TEM), revealing the presence of nanosized transition metal oxide and hydroxide nanoparticles, together with organic nanomaterial. The latter is well visible by TEM, energy-dispersive X-Ray spectroscopy (EDS), electron energy-loss spectroscopy(EELS), and Raman spectroscopy, which indicates the presence of amorphous graphitic carbon and CH vibrations. In the case of Ni derived nanomaterial, FTIR results confirm the presence of a beta-Ni(OH)2 hydroxide phase, while Raman and TEM measurements suggest also the presence of Ni(HCO3)2 nanosheets. The experimental results were finally discussed in the frame of the origin and evolution of simple and complex molecules of astrochemical interest, with special focus on those species potentially formed on the surface of metallic minor bodies in the solar system and cosmic dust grains in the interstellar medium(ISM).
4

[en] PRODUCTION AND CHARACTERIZATION OF MAGNETITE STRUCTURES: NANOPARTICLES, THIN FILMS AND LITHOGRAPHED ARRAYS / [pt] PRODUÇÃO E CARACTERIZAÇÃO DE ESTRUTURAS DE MAGNETITA: NANOPARTÍCULAS, FILMES FINOS E PADRÕES LITOGRAFADOS

GERONIMO PEREZ 29 October 2021 (has links)
[pt] Este trabalho pode ser dividido em três etapas principais: síntese das nanopartículas, deposição de filmes finos e litografia por feixe de elétrons. As nanopartículas magnéticas foram sintetizadas pelo método de co-precipitação a partir de sulfato de ferro II (FeSO4), cloreto férrico (FeCl3) e hidróxido de amônia (NH4OH) à temperatura ambiente. Para prevenir a formação de agregados, foi adicionado nitrato de sódio (NaNO3) em pequenas quantidades, que se mostrou bastante eficiente. Em seguida foram produzidos filmes de magnetita utilizando o sistema de pulverização catódica usando fonte de radiofrequência (sputtering RF). Os alvos foram produzidos por compactação das nanopartículas de magnetita produzidas anteriormente. Os filmes finos foram depositados em substrato de silício. A formação de magnetita durante a deposição foi confirmada por difração de raios-x e magnetômetro de amostra vibrante. Uma vez controlados os parâmetros de deposição, foram produzidos arranjos de magnetita. A litografia por feixe de elétrons foi produzida em substrato de silício recoberto com máscara de PMMA (polimetilmetacrilato) de 250 nm de espessura. Foram produzidos arranjos periódicos de formas básicas a modo de testar a técnica de litografia: quadrados de 1 μm e círculos de 1 μm, 500 nm e 250 nm de diâmetro formados de um filme de magnetita de 80 nm de espessura. A espessura do filme, forma, tamanho e separação das figuras que compõem os padrões litografados influenciam na facilidade com que será retirada a mascara de PMMA. / [en] This work can be divided into three main steps: synthesis of nanoparticles, thin film deposition and electron beam lithography. The magnetic nanoparticles were synthesized by co-precipitation method from iron II sulfate (FeSO4), ferric chloride (FeCl3) and ammonium hydroxide (NH4OH) at room temperature. A small amount of sodium nitrate (NaNO3) was added to avoid the cluster formation, which was very efficient. Then the magnetite thin films were produced using the sputtering RF (radio frequency source) system. The targets were produced by compression of magnetite nanoparticles previously produced in the first step. The thin films were deposited on a silicon substrate. The formation of the magnetite after the deposition was confirmed by x-ray diffraction and vibrating sample magnetometer. The arrays of magnetite were made once the deposition parameters were controlled. The electron beam lithography has been produced on silicon substrate covered of PMMA (polymethylmethacrylate) resist 250 nm thick. Were produced periodic arrays of basic forms a way to test the technique of lithography, a square micron circles 1 μm, 500 nm and 250 nm in diameter formed of a magnetite film 80 nm thick. The film thickness, shape, size and separation of the figures which comprise standards lithographed can influence the ease with which the mask is withdrawn from PMMA.

Page generated in 0.0251 seconds