• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] PESSIMISTIC Q-LEARNING: AN ALGORITHM TO CREATE BOTS FOR TURN-BASED GAMES / [pt] Q-LEARNING PESSIMISTA: UM ALGORITMO PARA GERAÇÃO DE BOTS DE JOGOS EM TURNOS

ADRIANO BRITO PEREIRA 25 January 2017 (has links)
[pt] Este documento apresenta um novo algoritmo de aprendizado por reforço, o Q-Learning Pessimista. Nossa motivação é resolver o problema de gerar bots capazes de jogar jogos baseados em turnos e contribuir para obtenção de melhores resultados através dessa extensão do algoritmo Q-Learning. O Q-Learning Pessimista explora a flexibilidade dos cálculos gerados pelo Q-Learning tradicional sem a utilização de força bruta. Para medir a qualidade do bot gerado, consideramos qualidade como a soma do potencial de vitória e empate em um jogo. Nosso propósito fundamental é gerar bots de boa qualidade para diferentes jogos. Desta forma, podemos utilizar este algoritmo para famílias de jogos baseados em turno. Desenvolvemos um framework chamado Wisebots e realizamos experimentos com alguns cenários aplicados aos seguintes jogos tradicionais: TicTacToe, Connect-4 e CardPoints. Comparando a qualidade do Q-Learning Pessimista com a do Q-Learning tradicional, observamos ganhos de 0,8 por cento no TicTacToe, obtendo um algoritmo que nunca perde. Observamos também ganhos de 35 por cento no Connect-4 e de 27 por cento no CardPoints, elevando ambos da faixa de 50 por cento a 60 por cento para 90 por cento a 100 por cento de qualidade. Esses resultados ilustram o potencial de melhoria com o uso do Q-Learning Pessimista, sugerindo sua aplicação aos diversos tipos de jogos de turnos. / [en] This document presents a new algorithm for reinforcement learning method, Q-Learning Pessimistic. Our motivation is to resolve the problem of generating bots able to play turn-based games and contribute to achieving better results through this extension of the Q-Learning algorithm. The Q-Learning Pessimistic explores the flexibility of the calculations generated by the traditional Q-learning without the use of force brute. To measure the quality of bot generated, we consider quality as the sum of the potential to win and tie in a game. Our fundamental purpose, is to generate bots with good quality for different games. Thus, we can use this algorithm to families of turn-based games. We developed a framework called Wisebots and conducted experiments with some scenarios applied to the following traditional games TicTacToe, Connect-4 and CardPoints. Comparing the quality of Pessimistic Q-Learning with the traditional Q-Learning, we observed gains to 100 per cent in the TicTacToe, obtaining an algorithm that never loses. Also observed in 35 per cent gains Connect-4 and 27 per cent in CardPoints, increasing both the range of 60 per cent to 80 per cent for 90 per cent to 100 per cent of quality. These results illustrate the potential for improvement with the use of Q-Learning Pessimistic, suggesting its application to various types of games.

Page generated in 0.043 seconds