• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] A2M3O12 FAMILY BULK CERAMICS WITH NEAR ZERO THERMAL EXPANSION AND THEIR MECHANICAL PROPERTIES / [pt] CERÂMICA MACIÇA DA FAMÍLIA A2M3O12 COM O COEFICIENTE DE EXPANSÃO TÉRMICA PRÓXIMO A ZERO E SUAS PROPRIEDADES MECÂNICAS

LUCIANA PRATES PRISCO 01 July 2020 (has links)
[pt] Cerâmicas termomióticas vem despertando interesse devido a sua propriedade de apresentar, sob aquecimento, uma expansão térmica baixa, próxima a zero ou negativa. Essa propriedade é proveniente de uma vibração transversal do ânion, que resulta numa aproximação de átomos em determinadas direções. A família A2M3O12 (A = um cátion trivalente e M = Mo6 positivo ou W6 positivo) apresenta uma transição de fase de monoclínica para ortorrômbica, sendo somente a fase ortorrômbica que apresenta o comportamento termomiótico. Essa família, especificamente, vem sendo bastante pesquisada, pois possui a vantagem de permitir uma vasta flexibilidade química, sem mudar de estrutura cristalina e por consequência, permitir ajustes no coeficiente de expansão térmica de acordo com a aplicação a qual o material se destina. A expansão térmica próxima à zero pode levar a uma promissora alta resistência ao choque térmico. Esse trabalho teve como objetivo, estudar as propriedades térmicas e mecânicas do Al2W3O12 que possui baixa expansão térmica positiva com o objetivo de determinar sua resistência ao choque térmico pela figura de mérito de Hasselman. Para isso, todas as suas propriedades térmicas (expansão térmica e condutividade) e mecânicas (módulo de elasticidade e resistência mecânica) foram obtidas experimentalmente apresentando um valor promissor de 120K (comparável ao da safira) para resistência ao choque térmico pela figura de mérito de Hasselman sob condições severas de aquecimento. A partir desse resultado foi desenvolvido uma segunda pesquisa com o objetivo de refinar a microestrutura e aumentar a densidade relativa da cerâmica maciça do Al2W3O12 e assim incrementar suas propriedades mecânicas. Uma síntese por co-precipitação, seguida de uma prensagem isostática e uma sinterização desenvolvida em três etapas foram implementadas, obtendo-se um aumento de 91 porcento para 96 porcento na densidade relativa, com aumento de 19 porcento no módulo de elasticidade e de 35 porcento na dureza vickers se comparados aos resultados obtidos pela amostra sinterizada anteriormente pelo método convencional de sinterização em uma etapa. No terceiro estágio desta tese foi estudada a expansão térmica de uma novo material (In0,5(ZrMg)0,75Mo3O12) com promissora expansão térmica próxima a zero (10-7 K-1), a partir do cálculo da regra das misturas. O material foi sintetizado por evaportação total.e seu coeficiente de expansão térmica intrínseco determinado in situ por difração de Raios-X foi de 1,6x10-7 K-1 na faixa de temperatura de 100 a 500 graus Celsius, enquanto o coeficiente de expansão térmica maciço, medido por dilatometria, foi de 6,68 x 10-7 K-1, na faixa de temperatura de 100 a 800 graus Celsius. Esse material apresenta uma transição de fase de monoclínica para ortorrômbica na temperatura de 82 graus Celsius o que limita seu uso como material termomiótico em temperaturas abaixo de 100 graus Celsius. / [en] Thermomiotic ceramics have been arousing interest due to their property of presenting a low, near or zero thermal expansion under hearing. This property comes from a transverse vibration of the anion, which results in an approximation of atoms in certain crystallographic axes. The A2M3O12 family (A = a trivalent cation and M = Mo6 positive or W6 positive) presents a phase transition from monoclinic to orthorhombic, with only the orthorhombic phase exhibiting thermomiotic behavior. This family is widely researched since it has the advantage of allowing a wide chemical flexibility without changing the crystalline structure and consequently allowing adjustments in the coefficient of thermal expansion according to the application, which the material is intended. Thermal expansion close to zero can lead to a promising high thermal shock resistance. This work aimed to study the thermal and mechanical properties of Al2W3O12 that has low thermal expansion with the goal of determining its thermal shock resistance by the Hasselman figure of merit. For this, all its thermal properties (thermal expansion and conductivity) and mechanical (Young modulus and mechanical strength) were obtained experimentally and presented a promising value of 120K (comparable to sapphire) for thermal shock resistance by the figure of merit of Hasselman under severe heating. A second research was developed with the goal of refining the microstructure and increasing the relative density of the Al2W3O12 bulk ceramics and thus increasing its mechanical properties. A synthesis by co-precipitation, folled by an isostatic pressing and a three steps sintering were carried out, obtaining an increase of 91 percent to 96 percent in the relative density, with increase of 19 percent in modulus of elasticity and 35 percent in Vickers hardness when compared to conventional sintering. The thermal expansion of a new material (In0,5(ZrMg)0,75Mo3O12) with promising thermal expansion close to zero (10-7 K1), calculated by mixing rule was studied in the third chapter of this thesis. The material was synthesized by total evaporation. Its intrinsic thermal expansion coefficient was determined in situ by X-ray diffraction and presented a value of 1.6x10-7 K-1 in the temperature range of 100 to 500 Celsius degrees, while the coefficient of expansion of the bulk obtained by dilatometry, was 6.68 x 10-7 K-1, in the temperature range of 100 to 800 Celsius degrees. This material presents a phase transition from monoclinic to orthorhombic at 82 Celsius degrees, which limits its use as thermomiothic material at temperatures above 100 Celsius degrees.
2

[pt] AVALIAÇÃO DO POTENCIAL DO SISTEMA AL2-XGAXW3O12 PARA RESISTÊNCIA AO CHOQUE TÉRMICO / [en] POTENTIAL OF THE AL2-XGAXW3O12 SYSTEM FOR THERMAL SHOCK RESISTANCE

ISABELLA LOUREIRO MULLER COSTA 09 June 2020 (has links)
[pt] O principal objetivo deste trabalho foi estudar o sistema Al2-xGaxW3O12 (x = 0,2; 0,4; 0,5; 0,6; 0,7; 0,8; 1; 2) visando compreender os efeitos da substituição parcial de Al3+ (r = 0,67 Angstrom) por Ga3+ (r = 0,76 Angstrom) em relação ao coeficiente de expansão térmica da fase Al2W3O12. Foi determinado que o limite de solubilidade de Ga3+ no sistema é x = 0,5, as composições x maior ou igual 0,6 evidenciaram, por difração de raios-X (DRX), a presença de WO3 como fase secundária. Os difratogramas das composições 0,2 menor ou igual x menor ou igual 0,5, a temperatura ambiente, apresentaram exclusivamente linhas características do sistema monoclínico (P21/a). A transição para a fase ortorrômbica (Pbcn), foi evidenciada por DRX in situ e dilatometria e ocorre abaixo de 100 C em todos os casos. A temperatura de transição de fase, determinada por dilatometria, aumentou conforme foi aumentada a incorporação de Ga3+ na estrutura cristalina. A análise termogravimétrica das composições monofásicas revelou que essas fases não são higroscópicas. Embora Al1,5Ga0,5W3O12, seja a composição monofásica com maior teor de Ga, a fase Al1.6Ga0.4W3O12 foi a que apresentou o menor coeficiente de expansão térmica linear, alfa L= 1.14 K -1, uma redução de 25 por cento quando comparado ao coeficiente linear de expansão da fase Al2W3O12. O refinamento pelo método de Rietveld do padrão de difração de raios-X obtido a 100 C da Al1.6Ga0.4W3O12 ortorrômbica, confirmou que o Ga3+ substituiu o Al3+ na proporção descrita pela fórmula química nominal e evidenciou que as distorções poliédricas, Al(Ga)O6 e WO4, foram maiores do que as observadas em fases desta família. A espectroscopia de Raman corroborou as análises de DRX quanto ao limite de solubilidade, porém, evidenciando que quantidades mínimas, indetectáveis por DRX, de Al2O3 e WO3 podem estar presentes nas composições x menor ou igual 0,5, quando a síntese é realizada pelo método de reação no estado sólido. Os gráficos de Kubelka-Munk do sistema Al2- xGaxW3O12 indicaram que a substituição parcial de parcial de Ga3+ por Al3+ aumenta o intervalo de banda em x menor ou igual 0,4, no entanto, foi observada uma saliência de absorção dentro da região do visível presente em todas as amostras, interpretada como uma conseqüência da presença de WO3 monoclínica, observada na espectroscopia Raman. A síntese da fase Ga2W3O12, não foi bem sucedida, embora a entalpia de formação deste composto, calculada por meio da equação generalizada de Kapustinskii e pelo ciclo de Born-Haber, seja fortemente exotérmica, ΔHF= −10149,15 Kj. mol -1. / [en] The aim of this work was to study the Al2-xGaxW3O12 system (x = 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 2) in order to investigate the relationship between the partial replacement of Al3+ (r = 67 Angstrom) by Ga3+ (r = 0.76 Angstrom) and the coefficient of thermal expansion on the Al2W3O12 phase. It was determined as limit of solubility of Ga3+ in Al2-xGaxW3O12 the sample 𝑥 = 0.5, once it was identified in the diffraction patter WO3 as a secondary phase in 𝑥 bigger or equal 0.6. Unlike Al2W3O12 which is orthorhombic (Pbcn) at room temperature, the phases 0.2 less or equal 𝑥 less or equal 0.5 in the Al2- xGaxW3O12 appeared, at room temperature, in the monoclinic system (P21/a). The transition to orthorhombic phase (Pbcn), determined by XRPD in situ and dilatometry, was observed below 100 C for all compositions. The phase transition temperature increases as the Ga3+ content was increased in the crystalline structure. The thermogravimetric analysis of the monophasic samples showed that they were not hygroscopic. Although the monophasic composition with the highest Ga3+ content was Al1.5Ga0.5W3O12, the phase Al1.6Ga0.4W3O12 presented the lowest linear coefficient of thermal expansion, alpha l = 1.14 K -1, a reduction of 25 percent comparing with the linear coefficient of thermal expansion of the phase Al2W3O12. The Rietveld fit to the orthorhombic Pbcn space group, of the Al1.6Ga0.4W3O12 diffraction pattern taken at 100 C, confirms that Ga3+ was replaced by Al3+ in the same proportion described in the nominal chemical formula, and showed that its polyhedral distortion , Al(Ga)O6 and WO4, is in a higher amount than generally noticed for other phases in this crystal family. The Raman spectroscopy corroborated the analyzes regarding the solubility limit, although it showed that the compositions 𝑥 less or equal 0,5 could have a minimum quantities, undetectable by XRPD, of Al2O3 and WO3, when synthesized by the solid state reaction method. Kubelka-Munk graphics of Al2-xGaxW3O12 suggest that the partial replacement of Al3+ by Ga3+ increases the band gap in x less or equal 0,4, however, the absorption of Al2-xGaxW3O12 in the visible region increase, this behavior is apparently caused by the presence of WO3, as deduced by Raman spectroscopy. Attempts to synthesize Ga2W3O12 was not successful, although the enthalpy of formation of this compound, calculated by Generalized Kapustinskii equation and the Born-Haber cycle, presented a high exothermic value, ΔHF = −10149,15 Kj. mol -1.

Page generated in 0.1869 seconds