1 |
[en] APPLICATIONS OF THE FIRST CONSISTENCY PROOF PRESENTED BY GENTZEN FOR PEANO ARITHMETIC / [pt] APLICAÇÕES DA PRIMEIRA PROVA DE CONSISTÊNCIA APRESENTADA POR GENTZEN PARA A ARITMÉTICA DE PEANOMARIA FERNANDA PALLARES COLOMAR 14 November 2003 (has links)
[pt] Na antologia que M.E. Szabo realizara dos trabalhos de
Gentzen e publicara em 1969 se transcrevem, em um apêndice,
algumas passagens apresentadas por Bernays ao editor
pertencentes a uma primeira prova de consistência para a
Aritmética de Peano realizada por Gentzen que não tinha
sido publicada até então. À diferença das outras provas de
consistência realizadas por Gentzen e já conhecidas na
década de trinta, esta prova não utiliza o procedimento de
indução transfinita até e0. Ao contrário, baseia-se na
definição de um processo de redução de seqüentes que se
associa sistematicamente a todo seqüente derivável
permitindo reconhecê-lo como verdadeiro. Nós reconstruímos
essa prova realizando algumas variações e estudamos o modo
pelo qual a técnica principal utilizada (a definição do
processo de redução de seqüentes) pode ser vista em
relação a resultados da lógica clássica de primeira ordem
tais como provas de completude. A parte central da nossa
dissertação é a realização de uma versão desta prova de
consistência para um sistema formal para a Aritmética de
Heyting. / [en] In the antology of Gentzens works made by M.E.Szabo and
published in 1969, we find out in an appendix, some
passages presented by Bernays to the editor. These texts
belong to a first proof of Peanos Arithmetic consistency
that Gentzen did not publish. In a different way from the
other proofs of consistency made by Gentzen and already
known in the thirties, this proof does not use the
procedure of transfinite induction up to e0. On the
contrary, it is based on the definition of a reduction
process for sequents that is systematically associated to
every derivable sequent allowing us to recognize it as a
true sequent. We reconstructed this proof making some
variations and we studied how the main technique used (the
definition of the reduction process) could be seen in
relation with other results of first order logic like
proofs of completness. The main part of our dissertation is
another version of this consistency proof for a formal
system for Heyting Arithmetic.
|
2 |
[en] AN EXPERIMENTAL APPROACH ON MINIMAL IMPLICATIONAL NATURAL DEDUCTION PROOFS COMPRESSION / [pt] UMA ABORDAGEM EXPERIMENTAL SOBRE A COMPRESSÃO DE PROVAS EM DEDUÇÃO NATURAL MINIMAL IMPLICACIONALJOSE FLAVIO CAVALCANTE BARROS JUNIOR 26 March 2020 (has links)
[pt] O tamanho das provas formais possui algumas importantes implicações
teóricas na área da complexidade computacional. O problema de determinar
se uma fórmula é uma tautologia da Lógica Proposicional Intuicionista e do
fragmento puramente implicacional da Lógica Minimal (M(contém)) é PSPACE-
Completo. Qualquer lógica proposicional com um sistema de dedução
natural que satisfaça o princípio da subfórmula possui o problema de
determinar tautologias em PSPACE. Saber se qualquer tautologia em M(contém)
admite provas de tamanho polinomialmente limitado está relacionado com
saber se NP = PSPACE. Técnicas de compressão de provas reportadas
na literatura utilizam duas abordagens principais para comprimir provas:
gerar provas já compactadas; comprimir uma prova já gerada. Proposta
por Gordeev e Haeusler (6), a Compressão Horizontal é uma técnica
de compressão de provas em dedução natural da M(contém) que utiliza grafos
direcionados para representar as provas. Dada a prova de uma tautologia
qualquer da M(contém), que pode possuir tamanho exponencial em relação ao
tamanho da conclusão, o objetivo da Compressão Horizontal é que a prova
resultante da compressão possua tamanho polinomialmente limitado em
relação ao tamanho da conclusão. Nosso trabalho apresenta a primeira
implementação da Compressão Horizontal, juntamente com os primeiros
resultados da aplicação da técnica sobre provas de tautologias da M(contém), além
disso, compara as taxas de compressão obtidas com técnicas tradicionais de
compressão de dados. / [en] The size of formal proofs has some important theoretical implications
in computational complexity theory. The problem of determining if some
formula of Intuitionistic Propositional Logic and the purely implicational
fragment of Minimal Logic (M(contains)) is a tautology is PSPACE-Complete. Any
propositional logic with a natural deduction system that satisfies the sub-
formula principle is PSPACE. To know if any tautology in M(contains) admits
polynomially sized proof is related to whether NP = PSPACE. Proof
compression techniques reported in literature use two main approaches
to proof compressing: generating already compressed proofs; compressing
an already generated proof. Proposed by Gordeev and Haeusler (6), the
Horizontal Compression is a natural deduction proof compression technique
that uses directed graphs to represent proofs. Given a tautology proof in
M(contains), which may have an exponential size in relation to conclusion length,
the goal of Horizontal Compression is that the compressed proof has a
polynomially limited size in relation to conclusion length. Our work presents
the first implementation of Horizontal Compression, together with the first
results of the execution of the technique on proofs of M(contains) tautologies.
|
3 |
[en] MULTIPLE SUCCEDENT SEQUENT CALCULUS FOR INTUITIONISTIC FIRST-ORDER LOGIC / [pt] CÁLCULO DE SEQÜENTES DE SUCEDENTE MÚLTIPLO PARA LÓGICA INTUICIONISTA DE PRIMEIRA ORDEMMARIA FERNANDA PALLARES COLOMAR 08 January 2008 (has links)
[pt] A primeira apresentação de um Cálculo de Seqüentes foi
feita por Gerhard Gentzen na década de 1930. Neste tipo de
sistema, a diferença entre as versões clássica e
intuicionista radicardinalidade do sucedente.
O sucedente múltiplo foi tradicionalmente considerado como
o elemento
que representava o aspecto clássico do sistema, enquanto
os seqüentes intuicionistas podiam ter, no máximo, uma
fórmula no sucedente. Nas décadas
seguintes foram formulados diversos cálculos
intuicionistas de sucedente
múltiplo que atenuaram essa restrição forte na
cardinalidade do sucedente.
Na década de 1990, estudou-se a relação de conexão ou
dependência entre
as fórmulas visando assegurar o caráter intuicionista dos
sistemas. Nós realizamos uma revisão dos sistemas de se
seqüentes intuicionistas e algumas das
suas aplicações. Apresentamos a versão do sistema FIL
(feita para o caso
proposicional por De Paiva e Pereira) para a lógica
intuicionista de primeira
ordem provando que o mesmo é correto, completo e satisfaz
eliminação de
corte. / [en] The first Sequent Calculus was presented by Gerhard
Gentzen in
the thirties. In this system, the difference between
intuitionistic logic and
classical logic is based on the cardinality of the
succedent. Traditionally,
the multiple succedent was considered the element that
preserved the
classical aspect of the system, while intuitionistic
sequents have, at most,
one formula in the succedent. In the following decades,
several multiple
succedent intuitionistic calculus were presented that
diminish shed this st strong
restriction in the cardinality of the su succedent. In the
decade of 1990, this
cardinality restriction was replaced by a dependency
relation between the
formula ocurrences in the antecedent and in the succedent
of a sequent in
order to ensure the intuitionistic character of the
system. We make a revision
of the intuitionistic systems and some of their
applications. We present a
version of the system FIL (accomplish shed for the
propositional case by De
Paiva and Pereira) for first-order logic proving that it
is sound, complete
and that it satisfies the cut-elimination theorem.
|
4 |
[en] BUILDING TABLEAUX FOR INTUITIONISTIC LINEAR LOGIC / [pt] CONSTRUINDO TABLEAUX PARA LÓGICA LINEAR INTUICIONISTAHUGO HOFFMANN BORGES 25 April 2022 (has links)
[pt] O objetivo desta dissertação é construir um tableaux linear intuicionista
a partir de um cálculo de sequentes relevante clássico. Os passos principais
dessa construção são: i) tradução das regras do cálculo dos sequentes relevante
clássico para regras de tableaux (capítulo 3), usando a estratégia apresentada
por D Agostino et al. em Tableau Methods for Substructural Logic. ii) construção de um tableaux linear clássico através da linearização do tableaux
clássico relevante (capítulo 4). iii) apresentar um tableau intuicionista ao estilo
Fitting, em que são adicionados rótulos T s e F s às fórmulas (capítulo 5). / [en] The main goal of this master tesis is intuitionistic linear tableaux from
a relevant sequent calculus. The central steps are: i) Apply D Agostino et
al. strategy to translate classical relevant sequent calculus rules to tableaux
rules for classical relevant logic (Chapter 3). ii) Use Meyer et al. strategy
to linearize the classical relevant tableaux (Chapter 4). iii) Build a new
intuicionistic linear tableaux with Fitting labels.
|
5 |
[en] LOGIC PROOFS COMPACTATION / [pt] COMPACTAÇÃO DE PROVAS LÓGICASVASTON GONCALVES DA COSTA 01 June 2007 (has links)
[pt] É um fato conhecido que provas clássicas podem ser
demasiadamente grandes. Estudos em teoria da prova
descobriram diferenças exponenciais entre
provas normais (ou provas livres do corte) e suas
respectivas provas não normais. Por outro lado, provadores
automáticos de teorema usualmente se baseiam na
construção de provas normais, livres de corte ou provas de
corte atômico, pois tais procedimento envolvem menos
escolhas. Provas de algumas tautologias são
conhecidamente grandes quanto realizadas sem a regra do
corte e curtas quando a utilizam. Queremos com este
trabalho apresentar procedimentos para reduzir o
tamanho de provas proposicionais. Neste sentido,
apresentamos dois métodos. O primeiro, denominado método
vertical, faz uso de axiomas de extensão e alguns
casos é possível uma redução considerável no tamanho da
prova. Apresentamos um procedimento que gera tais axiomas
de extensão. O segundo, denominado método horizontal,
adiciona fórmulas máximas por meio de unificação via
substituição de variáveis proposicionais. Também
apresentamos um método que gera tal unificação durante o
processo de construção da prova. O primeiro método
é aplicado a dedução natural enquanto o segundo à Dedução
Natural e Cálculo de Seqüentes. As provas produzidas
correspondem de certo modo a provas não normais (com a
regra do corte). / [en] It is well-known that the size of propositional classical
proofs can be
huge. Proof theoretical studies discovered exponential
gaps between normal or
cut-free proofs and their respective non-normal proofs.
The task of automatic
theorem proving is, on the other hand, usually based on
the construction of
normal, cut-free or only-atomic-cuts proofs, since this
procedure produces less
alternative choices. There are familiar tautologies such
that the cut-free proof
is huge while the non-cut-free is small. The aim of this
work is to reduce the
weight of proposicional deductions. In this sense we
present two methods. The
fi first, namely vertical method, uses the extension
axioms. We present a method
that generates a such extension axiom. The second, namely
horizontal method,
adds suitable (propositional) unifi fications modulo
variable substitutions.We also
present a method that generates a such unifi fication
during the proving process.
The proofs produced correspond in a certain way to non
normal proofs (non
cut-free proofs).
|
6 |
[en] ON SOME RELATIONS BETWEEN NATURAL DEDUCTION AND SEQUENT CALCULUS / [pt] ALGUMAS RELAÇÕES ENTRE CÁLCULO DE SEQUENTES E DEDUÇÃO NATURALCECILIA REIS ENGLANDER LUSTOSA 19 March 2015 (has links)
[pt] Segerberg apresentou uma prova geral da completude para lógicas
proposicionais. Para tal, um sistema de dedução foi definido de forma que suas
regras sejam regras para um operador booleano arbitrário para uma dada lógica
proposicional. Cada regra desse sistema corresponde a uma linha na tabela de
verdade desse operador. Na primeira parte desse trabalho, mostramos uma
extensão da ideia de Segerberg para lógicas proposicionais finito-valoradas e
para lógicas não-determinísticas. Mantemos a ideia de definir um sistema de
dedução cujas regras correspondam a linhas de tabelas verdade, mas ao invés de
termos um tipo de regra para cada valor de verdade da lógica correspondente,
usamos uma representação bivalente que usa a técnica de fórmulas separadoras
definidas por Carlos Caleiro e João Marcos. O sistema definido possui tantas
regras que pode ser difícil trabalhar com elas. Acreditamos que um sistema
de cálculo de sequentes definido de forma análoga poderia ser mais intuitivo.
Motivados por essa observação, a segunda parte dessa tese é dedicada à
definição de uma tradução entre cálculo de sequentes e dedução natural, onde
procuramos definir uma bijeção melhor do que as já existentes. / [en] Segerberg presented a general completeness proof for propositional logics.
For this purpose, a Natural Deduction system was defined in a way that its rules
were rules for an arbitrary boolean operator in a given propositional logic. Each
of those rules corresponds to a row on the operator s truth-table. In the first
part of this thesis we extend Segerbergs idea to finite-valued propositional logic
and to non-deterministic logic. We maintain the idea of defining a deductive
system whose rules correspond to rows of truth-tables, but instead of having
n types of rules (one for each truth-value), we use a bivalent representation
that makes use of the technique of separating formulas as defined by Carlos
Caleiro and João Marcos. The system defined has so many rules it might be
laborious to work with it. We believe that a sequent calculus system defined in
a similar way would be more intuitive. Motivated by this observation, in the
second part of this thesis we work out translations between Sequent Calculus
and Natural Deduction, searching for a better bijective relationship than those
already existing.
|
7 |
[en] SOME RESULTS IN A PROOF-THEORY BASED ON GRAPHS / [pt] ALGUNS RESULTADOS EM TEORIA DE PROVA BASEADO EM GRAFOSMARCELA QUISPE CRUZ 19 January 2017 (has links)
[pt] A teoria da prova tradicional da lógica proposicional trata provas cujos tamanhos podem ser demasiado grandes. Estudos teóricos de prova descobriram diferenças exponenciais entre provas normais ou livres de corte e suas respectivas provas não-normais. Assim, o uso de grafos-de-prova, ao invés de árvores ou listas, para representar provas está se tornando mais popular entre teóricos da prova. Os grafos-de-prova servem como uma forma de proporcionar uma melhor simetria para a semântica de provas e uma maneira de estudar a complexidade das provas proposicionais. O objetivo deste trabalho é reduzir o peso/tamanho de deduções. Apresentamos formalismos de grafos de prova que visam capturar a estrutura lógica de uma dedução e uma forma de facilitar a visualização das propriedades. A vantagem destes formalismos é que as fórmulas e sub-deduções em dedução natural, preservadas na estrutura de grafo, podem ser compartilhadas eliminando sub-deduções desnecessárias resultando na prova reduzida. Neste trabalho, damos uma definição precisa de grafos de prova para a lógica puramente implicacional, logo estendemos esse resultado para a lógica proposicional completa e mostramos como reduzir (eliminando fórmulas máximas) essas representações de tal forma que um teorema de normalização pode ser provado através da contagem do número de fórmulas máximas na derivação original. A normalização forte será uma consequência direta desta normalização, uma vez que qualquer redução diminui as medidas correspondentes da complexidade da derivação. Continuando com o nosso objetivo de estudar a complexidade das provas, a abordagem atual também fornece representações de grafo para lógica de primeira ordem, a inferência profunda e lógica bi-intuitionista. / [en] Traditional proof theory of Propositional Logic deals with proofs which size can be huge. Proof theoretical studies discovered exponential gaps between normal or cut free proofs and their respective non-normal proofs. Thus, the use of proof-graphs, instead of trees or lists, for representing proofs is getting popular among proof-theoreticians. Proof-graphs serve as a way to provide a better symmetry to the semantics of proofs and a way to study complexity of propositional proofs and to provide more efficient theorem provers, concerning size of propositional proofs. The aim of this work is to reduce the weight/size of deductions. We present formalisms of proof-graphs that are intended to capture the logical structure of a deduction and a way to facilitate the visualization. The advantage of these formalisms is that formulas and subdeductions in Natural Deduction, preserved in the graph structure, can be shared deleting unnecessary sub-deductions resulting in the reduced proof. In this work, we give a precise definition of proof-graphs for purely implicational logic, then we extend this result to full propositional logic and show how to reduce (eliminating maximal formulas) these representations such that a normalization theorem can be proved by counting the number of maximal formulas in the original derivation. The strong normalization will be a direct consequence of such normalization, since that any reduction decreases the corresponding measures of derivation complexity. Continuing with our aim of studying the complexity of proofs, the current approach also give graph representations for first order logic, deep inference and bi-intuitionistic logic.
|
8 |
[en] A GENERAL APPROACH TO QUANTIFIERS IN NATURAL DEDUCTION / [pt] UMA ABORDAGEM GERAL PARA QUANTIFICADORES EM DEDUÇÃO NATURALCHRISTIAN JACQUES RENTERIA 23 September 2004 (has links)
[pt] Existem diferentes estilos de cálculos dedutivos, usados
para derivar os teoremas de uma lógica. Os mais habituais
são os sistemas axiomáticos; mas, do ponto de vista da
teoria da prova, os sistemas em dedução natural parecem
ser mais interessantes. Essa é a motivação que leva ao
desenvolvimento de técnicas que visam a facilitar a
transformação de um cálculo dedutivo para o estilo em
dedução natural. Esse trabalho se concentra no aspecto de
modelar regras para os quantificadores da linguagem
considerada e, para isso, faz uso de rótulos. Após uma
apresentação intuitiva da técnica desenvolvida, passa-se
à exposição de sistemas lógicos tratados pelo método:
lógica de ultrafiltros, lógica de filtros, CTL, lógica de
Keisler e CTL*. Em cada caso, analisam-se aspectos de
teoria da prova. / [en] There are many kinds of deductive calculus. The axiomatic
ones are the more usual. However, from the point of view of
proof theory, Natural Deduction systems seem to be more
interesting. This is the motivation for developping a
technique that aims to ease the transformation from
deductive calculus to Natural Deduction style. This work
concentrates on the aspect of modeling the rules for the
quantifiers of the logic considered, and for this purpose
labels are used. After an intuitive presentation of the
technique developped, some logical systems are treated by
the method: ultrafilter logic, filter logic, CTL, Keisler`s
logic and CTL*. For each one of them proof-theoretical
aspects are analysed.
|
Page generated in 0.0311 seconds