1 |
[en] ELECTRONIC TRANSPORT AND THERMOELECTRIC PROPERTIES OF STRONGLY CORRELATED NANOSCOPIC SYSTEMS / [pt] TRANSPORTE ELETRÔNICO E PROPRIEDADES TERMOELÉTRICAS DE SISTEMAS NANOSCÓPICOS FORTEMENTE CORRELACIONADOSGUILLERMO ANTONIO MAXIMILIANO GOMEZ SILVA 10 January 2019 (has links)
[pt] Nesta tese foram estudados três sistemas nanoscópicos compostos de pontos quânticos (PQs). No primeiro deles foi analisada a denominada nuvem Kondo, ou a extensão da blindagem que os spins da banda de condução fazem do spin de uma impureza magnética embebida em uma matriz metálica e representada, no nosso caso, por um PQ. As propriedades da nuvem Kondo foram obtidas através da manifestação da ressonância Kondo na densidade de estados local nos sítios da matriz metálica e também através das correlações de spin entre o spin do elétron no PQ e os spins da banda de condução. Foi possível encontrar uma concordância entre as extensões da nuvem Kondo obtidas com ambos métodos. O segundo sistema estudado consiste em uma estrutura de três PQs alinhados e com o PQ central acoplado a dois contatos metálicos. Foi analisada a operação deste sistema como uma porta lógica quântica cujo funcionamento depende do estado de carga do PQ central. Foi feito um estudo dependente do tempo das propriedades do sistema e, em particular, da correlação dos spins dos PQs laterais. Mostramos que o efeito Kondo, refletido na condutância do sistema, pode ser uma ferramenta fundamental para conhecer o estado da porta quântica. Os primeiros dois sistemas foram tratados usando o método dos Bósons Escravos na aproximação de campo médio. Finalmente, foi estudado o transporte termoelétrico em um sistema de dois PQs quando um deles está acoplado a contatos metálicos unidimensionais. O sistema foi analisado no
regime de resposta linear e não linear a um potencial externo no regime de bloqueio de Coulomb. Mostramos que a presença de ressonâncias Fano e de uma singularidade de Van-Hove na densidade de estados dos contatos unidimensionais perto do nível de Fermi são ingredientes fundamentais para o aumento da eficiência termoelétrica do dispositivo. O problema de muitos corpos foi resolvido na aproximação de Hubbard III que permite um estudo correto das propriedades de transporte deste sistema para T maior que TK, onde TK é a temperatura Kondo. / [en] In this thesis, were studied three nanoscopic quantum dot (QD) systems. First, the so-called Kondo cloud was analyzed, the extension of the conduction band spin screening of a magnetic impurity embedded in a
metallic matrix and represented, in our case, by a QD. The Kondo cloud properties were obtained studying the way in which the local density of states of the metallic matrix sites reflects the Kondo resonance and also through the spin-spin correlations between the QD and the conduction band spins. It was possible to find a good agreement between the Kondo cloud extensions obtained using both methods. The second system consists of three aligned QDs with the central QD connected to two metallic leads. The operation of this system as a quantum gate was studied, which depends on the central QD charge. A time dependent study of the system properties and, in particular, of the lateral QDs spin correlation was developed. We
showed that the Kondo effect, reflected in the conductance, could be a fundamental tool to measure the information contained in the quantum gate state. The first two systems were treated using the Slave Bosons Mean Field Approximation method. Finally, we studied the thermoelectric transport of a two QD system when one of them is connected to two onedimensional leads. The system was analyzed in the linear and nonlinear response to an external applied potential, always in the Coulomb blockade regime. It was found that the presence of Fano resonances and a Van-Hove singularity in the one-dimensional lead density of states near the Fermi level are fundamental ingredients to enhance thermoelectric efficiency. The
many-body problem was treated in the Hubbard III approximation, which is a correct approach to study the transport properties for T greater than TK, where TK is the Kondo temperature.
|
Page generated in 0.2069 seconds