171 |
In-situ Chemical Synthesis and Light Emitting Diodes of Non-fully Conjugated Heterocyclic Aromatic Polymer with Functionalized Multi-Wall Carbon NanotubesLin, Jun-shao 12 July 2008 (has links)
Luminescent emission of partially conjugated homopolymers was successfully demonstrated as light emitting diodes (LEDs). A series of coil-like heterocyclic aromatic poly(2,2¡¦-phenyl-5,5¡¦-bibenzimiazole) (Pbi) was synthesized and derivatized with alkyl pendants for changing the band gap to form different electroluminescence (EL) emissions.
Because of the entropy and van der Waals' interaction, multi-wall carbon nanotube (MWNT) tends to aggregate. In this investigation, chemical synthesis was applied to functionalize the MWNT. MWNT was esterificated by incorporating the functional group (-COOC10H21) to reduce its aspect ratio to facilitate its dispersion in the Pbi solution. MWNT-COOC10H21 was analyzed using Fourier transform infrared, elemental analysis, Raman spectrum and thermogravimetric analysis.
In the polymer light emitting devices, Pbi mixed with MWNT-COOC10H21 would decrease threshold voltage for about 2 V, and the device emission current was increased 5~10 times of magnitude than those of devices without MWNT- COOC10H21.
Pbi was in-situ polymerized with acidified multi-wall carbon nanotube (MWNT- COOH) for polymer LED fabrication. The emission current of these devices was still increased 10~15 times but no threshold voltage decrease compared to those of Pbi polymer solution-mixed with MWNT-COOC10H21. The polymer LED Commission International del'Eclairage chromatic indices were about the same for Pbi mixed with MWNT-COOC10H21 or in-situ polymerized with MWNT-COOH.
|
172 |
A Study on Optical Properties of High Color-Rendering Index for Nitride Phosphor Mixture in White-Light LEDsLin, Ying-Jyun 02 July 2009 (has links)
This paper tries to explore the phosphor optical characteristics through reliability tests using white light emitting diodes (WLEDs) with a high color rendering index
(CRI ,Ra¡Ö90). Based on light mixing principles and considering the high CRI, three color-coded powders were mixed separately with silicone into a phosphor, and then
bottomed with blue chips into WLEDs. The three powders were oxide nitride (red), YAG (yellow), and silicate (green).
Two kinds of samples were fabricated ¡V phosphor and emitters similar to commercial products. Both cool-white (CCT=5650~7000K, lumen efficiency¡Ö60 lum/w.) and
warm-white (CCT=2850~3250K, lumen efficiency¡Ö50 lum/w.) samples passed the Bin Code distribution process and brightness measurement. The results indicate better
lumen efficiency than previously published research.
After the three kinds of mono-colored phosphors were created, .we implemented the reliability test in which three CREE standards were chosen. These standards were (1)
high temperature with high humidity test (60¢J , 90% humidity) in operating and non-operating condition; (2) thermal shock test (-40¢J ~125¢J ); (3) life time test.
The thermal shock test showed the decaying power of intensity for red, yellow, and green phosphors were 11.7%, 17.5%, and 19.3% respectively. These results demonstrate that the red phosphor has the best thermal resistance. However, after the high temperature with high humidity tests, the decaying power of intensity for red,yellow, and green phosphor were 15.7%, 10.1% and 6.4% correspondingly. These results show that the green phosphor has best aqua resistance. In the life time test of
emitters, the decaying power of intensity for the cool-white emitter was 3.2%, while the warm-white emitter showed 4.2%. As such, cool-white emitters were concluded to
have better reliability than warm-white emitters.
|
173 |
A study of efficiency droop of green light emitting diodes grown by metalorganic chemical vapor depositionSebkhi, Nordine 18 November 2011 (has links)
The objective of this thesis is to discuss the solutions investigated by AMDG (Advanced Materials and Devices Group) to reduce the "efficiency droop" effect that occurs in III-Nitrides Light Emitting Diodes (LEDs) when driven at high injection current densities. The efficiency droop refers to a decrease of the LED light emission efficiency when increases the current density from low values ~10 A/cm2 to higher values >100A/cm2. Many scientific papers have been written about the possible reasons for this phenomenon. Therefore, this thesis will discuss the different effects suspected to contribute to the droop, and discuss LED structure modifications studied by Dr. Dupuis' research group to reduce their impact. In addition to a description of a conventional LED structure, a discussion of the device fabrication process will be provided including the solutions investigated in our group to improve LED performance.
Because measurement is critical to our studies, a description of the equipment used by the AMDG will be provided, e.g., the Electroluminescence (EL) and Photoluminescence (PL) test stations, Atomic Force Microscopy (AFM) for surface topology, TLM for metallic contact resistivity, X-Ray diffraction for crystal quality and epitaxial layer structure, and Hall-Effect measurement for doping concentration characterization and material resistivity.
Because the IQE gives us a direct assessment of the active region's crystal quality, the setup and operation of a new Temperature-Dependent PL (TD-PL) system to measure the Internal Quantum Efficiency (IQE) was the main focus of this research. The External Quantum Efficiency (EQE) is measured using electroluminescence measurements. The EL measurements involve the acquisition of the emitted light spectrum along with different processed data such as the Full-Width at Half Maximum (FWHM) of the spectral intensity, the peak wavelength, output power, etc., which allows a comparison of the different LED structure performances.
Within this work, a new LabVIEW© program (called QuickTest 2.0) has been developed in order to automate the instrumentation setup and improve both the speed and accuracy of EL acquisition.
A brief description of the G language used by the LabVIEW© software will be provided along with the objective and motivation for upgrading the program, the general features of the program, and a comparison of spectrum acquisition and processed data results. The benefit for the research in the AMDG was to reduce measurement time, improve efficiency, supply a more user-friendly front-panel, and to enable transfer to other computers.
|
174 |
Advanced metallization and applications to large area active matrix arrays and polysilicon thin film transistors /Howell, Robert S., January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 162-174).
|
175 |
Luminous intensity measurements for LED related traffic signals and signsJiang, Zhaoning. Zheng, Jim P. January 2004 (has links)
Thesis (M.S.)--Florida State University, 2004. / Advisor: Dr. Jim P. Zheng, Florida State University, College of Engineering, Dept. of Electrical and Computer Engineering. Title and description from dissertation home page (viewed June 18, 2004). Includes bibliographical references.
|
176 |
A study on novel organic semiconductor devices light-emitting diode and thin-film transistor /Cheng, Kam-ho. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references. Also available in print.
|
177 |
Pattern recognition for automated die bonding /Tsang, Chiu-ming. January 1982 (has links)
Thesis--M. Phil., University of Hong Kong, 1983.
|
178 |
Development of single wall carbon nanotube transparent conductive electrodes for organic electronicsJackson, Roderick Kinte'. January 2009 (has links)
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Graham, Samuel; Committee Member: Garimella, Srinivas; Committee Member: Kippelen, Bernard; Committee Member: Melkote, Shreyes; Committee Member: Ready, Jud. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
179 |
Enhanced active cooling of high power led light sources by utilizing shrouds and radial finsGleva, Mark. January 2009 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Graham, Samuel; Committee Member: Joshi, Yogendra; Committee Member: Kumar, Satish. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
180 |
Resonant power MOSFET drivers for LED lighting /Tuladhar, Looja R. January 2009 (has links)
Thesis (M.S.)--Youngstown State University, 2009. / Includes bibliographical references (leaves 44-45). Also available via the World Wide Web in PDF format.
|
Page generated in 0.0665 seconds