Spelling suggestions: "subject:"algebra abstrato"" "subject:"álgebra abstrato""
21 |
Um código co-dígito verificador baseado em D5 : uma aplicação dos grupos de simetriaSilva, Elisabete Santana de ávila e 11 April 2013 (has links)
This present work to describe the code based on D5 as part of the application of Abstract Algebra, through Symmetry Groups, as well as its advantages over other codes in the case of detection of typos. To this end, we provide some definitions and theorems of the theory of groups useful for understanding this work. Study groups Permutation Groups and Symmetry, issues of great relevance to the study of dihedral groups, being these, particularly if those groups and the basis for the development of the code described herein. / Este trabalho tem como objetivo descrever o Código baseado em D5 como aplicação de parte da Álgebra Abstrata, através dos Grupos de Simetria, bem como suas vantagens em relação a outros códigos, em se tratando da detecção de erros de digitação. Para tanto, fornecemos algumas definições e teoremas da teoria dos Grupos úteis à compreensão deste trabalho. Estudamos os Grupos de Permutação e os Grupos de Simetria, assuntos de grande relevância para o estudo dos Grupos Diedrais, por serem, estes, caso particular dos grupos citados e base para o desenvolvimento do código aqui descrito.
|
22 |
Os diversos conflitos observados em alunos de licenciatura num curso de álgebra: identificação e análiseFranco, Hernando José Rocha January 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-12-19T18:12:53Z
No. of bitstreams: 1
hernandojoserochafranco.pdf: 3297163 bytes, checksum: d446ec3a27dd1d8006c343e9dfd92ecf (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-07T12:37:54Z (GMT) No. of bitstreams: 1
hernandojoserochafranco.pdf: 3297163 bytes, checksum: d446ec3a27dd1d8006c343e9dfd92ecf (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-07T14:07:11Z (GMT) No. of bitstreams: 1
hernandojoserochafranco.pdf: 3297163 bytes, checksum: d446ec3a27dd1d8006c343e9dfd92ecf (MD5) / Made available in DSpace on 2017-02-07T14:07:11Z (GMT). No. of bitstreams: 1
hernandojoserochafranco.pdf: 3297163 bytes, checksum: d446ec3a27dd1d8006c343e9dfd92ecf (MD5)
Previous issue date: 2011 / Neste trabalho, investigam-se os conflitos de aprendizagem que emergem quando estudantes de Licenciatura em Matemática estão diante de um primeiro curso de Álgebra Abstrata. Ao longo de um semestre, acompanhamos doze alunos, licenciandos em Matemática, durante as aulas da disciplina Álgebra I, cuja ementa contempla os conceitos de anéis, ideais, corpos e polinômios. O estudo fundamentou-se nos processos constituintes do Pensamento Matemático Avançado, na teoria da imagem e definição conceituais e nos níveis de sofisticação do pensamento matemático – procedimento, processo e proceito. Outros subsídios teóricos vieram com o levantamento de aspectos históricos da Álgebra como Ciência e como disciplina curricular da Educação Matemática. O contato direto com a turma durante as aulas, a aplicação de questionários e a observação das avaliações possibilitaram a coleta dos dados da pesquisa. Identificadas as dificuldades de aprendizagem, buscamos discuti-las à luz das interações entre a definição formal do objeto matemático e as imagens conceituais que os alunos formaram desse objeto. Ao final, apresentamos uma categorização dos conflitos analisados com base nas compreensões do fenômeno estudado. / In this work, the learning conflicts are investigated that emerge when students of degree in Mathematics are ahead of a first course of Abstract Algebra. Throughout a semester we follow twelve pupils, undergraduates in Mathematics, during the lessons of disciplines Algebra I, whose summary contemplates the ring concepts, ideals, fields and polynomials. The study it was based on the constituent processes of the Advanced Mathematical Thinking, on the theory of the conceptual image and definition and on the levels of sophistication of the mathematical thinking - procedure, process and procept. Other theoretical subsidies had come with the survey of historical aspects of Algebra as Science and as discipline curricular of the Mathematical Education. The direct contact with the group during the lessons, the application of questionnaires and the comment of the evaluations makes possible the collection of the data of the research. Identified the learning difficulties, we search discutiz them it the light of the interactions between the formal definition of the mathematical object and the conceptual images that the pupils had formed of this object. To the end, we present a categorization of the analyzed conflicts on the basis of the understandings of the studied phenomenon.
|
Page generated in 0.0405 seconds