Spelling suggestions: "subject:"equivariant"" "subject:"équivariant""
1 |
Equivariant Differential CohomologyKübel, Andreas 03 November 2015 (has links) (PDF)
The construction of characteristic classes via the curvature form of a
connection is one motivation for the refinement of integral cohomology
by de Rham cocycles -- known as differential cohomology. We will discuss
the analog in the case of a group action on the manifold: We will show
the compatibility of the equivariant characteristic class in integral
Borel cohomology with the equivariant characteristic form in the Cartan
model. Motivated by this understanding of characteristic forms, we
define equivariant differential cohomology as a refinement of
equivariant integral cohomology by Cartan cocycles.
|
2 |
Equivariant Differential CohomologyKübel, Andreas 28 October 2015 (has links)
The construction of characteristic classes via the curvature form of a
connection is one motivation for the refinement of integral cohomology
by de Rham cocycles -- known as differential cohomology. We will discuss
the analog in the case of a group action on the manifold: We will show
the compatibility of the equivariant characteristic class in integral
Borel cohomology with the equivariant characteristic form in the Cartan
model. Motivated by this understanding of characteristic forms, we
define equivariant differential cohomology as a refinement of
equivariant integral cohomology by Cartan cocycles.
|
3 |
Stable equivariant motivic homotopy theory and motivic Borel cohomologyHerrmann, Philip 10 August 2012 (has links)
Im Mittelpunkt der Untersuchungen stehen Grundlagen für äquivariante motivische Homotopietheorie. Für eine neue Grothendieck-Topologie auf einer Kategorie von äquivarianten glatten k-Schemata werden unstabile und stabile motivische Homotopietheorie entwickelt. Im zweiten Teil der Arbeit wird als Anwendung der stabilen Theorie eine Adams-Spektralsequenz mit motivischer Borel-Kohomologie konstruiert.
|
Page generated in 0.0561 seconds