Spelling suggestions: "subject:"équivariante"" "subject:"equivariant""
1 |
Variétés de drapeaux symplectiques impairesMihai, Ion Alexandru 27 October 2005 (has links) (PDF)
Les grassmanniennes symplectiques et, plus généralement, les variétés de drapeaux symplectiques, sont les variétés de sous-espaces isotropes, respectivement de drapeaux de sous-espaces isotropes, relativement à une 2-forme antisymétrique non dégénérée. Ce sont les variétés projectives homogènes du groupe symplectique.<br />Nous étudions les grassmanniennes et les variétés de drapeaux symplectiques impaires, qui sont des objets analogues associés à une 2-forme antisymétrique générique sur un espace vectoriel complexe de dimension impaire. Ces variétés sont munies d'actions naturelles du groupe symplectique impair des transformations linéaires qui préservent la forme antisymétrique. Nous montrons que, bien que ces actions ne soient pas transitives, ces variétés partagent de nombreuses propriétés avec les variétés homogènes.<br />En particulier, nous calculons le groupe d'automorphismes des grassmanniennes symplectiques impaires et obtenons que tous ces automorphismes proviennent de l'action du groupe symplectique impair. De même, nous établissons un théorème de type Borel-Weil pour le groupe symplectique impair et explicitons le lien entre certaines classes de représentations de ce groupe construites par Proctor et par Shtepin. Nous étudions également la cohomologie équivariante de la variété des drapeaux symplectiques impairs maximaux. Nous obtenons une formule de type Chevalley-Pieri et nous donnons une présentation à la Borel de l'anneau de cohomologie équivariante. De cette dernière, nous déduisons que l'anneau de cohomologie ordinaire de la variété des drapeaux symplectiques impairs maximaux est isomorphe à l'anneau de cohomologie ordinaire de la variété de drapeaux quadratiques.
|
2 |
Modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) / Local model of Hilbert-Siegel moduli schemes in Г₁(p)-levelLiu, Shinan 28 September 2018 (has links)
Dans cette thèse, nous étudions la mauvaise réduction de variétés de Shimura. Plus précisément, nous construisons un modèle local des schémas de Hilbert-Siegel de niveau Г₁(p) sur Spec Zq lorsque p est non-ramifié dans le corps totalement réel, où q est le cardinal résiduel au-dessus de p. Notre outil principal est une variante sur le petit topos de Zariski du complexe de Lie anneau-équivariant Aℓv_G défini par Illusie dans sa thèse, où A est un anneau commutatif et G est un schéma en A-modules.Nous montrons aussi une compatibilité entre le complexe de Lie de G équivariant par l’anneau A, et celui équivariant par le monoïde multiplicatif sous-jacent de A.Ce complexe nous permet de calculer le complexe de Lie Fq-équivariant d’un schéma en groupes de Raynaud, donc de relier le modèle entier et le modèle local. / In this thesis, we study the bad reduction of Shimura varieties. More precisely, we construct a local model of Hilbert-Siegel moduli schemes in level Г₁(p) over Spec Zq when p is unramified in the totally real field, where q is the residue cardinality over p. Our main tool is a variant over the small Zariski topos of the ring-equivariant Lie complex Aℓv_G defined by Illusie in his thesis, where A is a commutative ringand G is a scheme of A-modules. We also prove a compatibility result between thering-equivariant Lie complex and the Lie complex equivariant by the multiplicative monoid underlying this ring. With this complex, we calculate the Fq-equivariant Lie complex of a Raynaud group scheme, then relate the integral model and the local model.
|
3 |
Une formule de Riemann-Roch équivariante pour les courbesBorne, Niels 10 March 2000 (has links) (PDF)
Le cadre du travail présenté dans cette thèse est celui de la théorie équivariante des courbes, c'est-à-dire l'étude des courbes munies d'une action d'un groupe G, qu'on considère toujours fini. Le résultat essentiel est un théorème de Riemann-Roch à valeurs dans l'anneau des caractères du groupe considéré, et qui relève le théorème classique. Il est obtenu pour des G-faisceaux de rang quelconque grâce à l'introduction d'un groupe de diviseurs à coefficients équivariants qui permet en particulier de définir le déterminant et le degré d'un tel faisceau. On applique ce théorème au calcul de structures galoisiennes d'origine géométrique.
|
4 |
Estimation de paramètres en exploitant les aspects calculatoires et numériquesKadje Kenmogne, Romain 08 1900 (has links)
No description available.
|
Page generated in 0.0339 seconds