• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equivariant Differential Cohomology

Kübel, Andreas 03 November 2015 (has links) (PDF)
The construction of characteristic classes via the curvature form of a connection is one motivation for the refinement of integral cohomology by de Rham cocycles -- known as differential cohomology. We will discuss the analog in the case of a group action on the manifold: We will show the compatibility of the equivariant characteristic class in integral Borel cohomology with the equivariant characteristic form in the Cartan model. Motivated by this understanding of characteristic forms, we define equivariant differential cohomology as a refinement of equivariant integral cohomology by Cartan cocycles.
2

Equivariant Differential Cohomology

Kübel, Andreas 28 October 2015 (has links)
The construction of characteristic classes via the curvature form of a connection is one motivation for the refinement of integral cohomology by de Rham cocycles -- known as differential cohomology. We will discuss the analog in the case of a group action on the manifold: We will show the compatibility of the equivariant characteristic class in integral Borel cohomology with the equivariant characteristic form in the Cartan model. Motivated by this understanding of characteristic forms, we define equivariant differential cohomology as a refinement of equivariant integral cohomology by Cartan cocycles.
3

Stable equivariant motivic homotopy theory and motivic Borel cohomology

Herrmann, Philip 10 August 2012 (has links)
Im Mittelpunkt der Untersuchungen stehen Grundlagen für äquivariante motivische Homotopietheorie. Für eine neue Grothendieck-Topologie auf einer Kategorie von äquivarianten glatten k-Schemata werden unstabile und stabile motivische Homotopietheorie entwickelt. Im zweiten Teil der Arbeit wird als Anwendung der stabilen Theorie eine Adams-Spektralsequenz mit motivischer Borel-Kohomologie konstruiert.

Page generated in 0.0472 seconds