Spelling suggestions: "subject:"clairement structurée"" "subject:"clairement structurés""
1 |
Superresolution fluorescence microscopy with structured illumination / Microscopie de fluorescence à super-résolution par éclairement structuréNegash, Awoke 29 November 2017 (has links)
Récemment, de nombreuses techniques de microscopie de fluorescence de super-résolution ont été développées pour permettre d'observer de nombreuses structures biologiques au-delà de la limite de diffraction. La microscopie d'illumination structurée (SIM) est l'une de ces technologies. Le principe de la SIM est basé sur l'utilisation d'une grille de lumière harmonique qui permet de translater les hautes fréquences spatiales de l'échantillon vers la région d’observation du microscope. Les méthodes classiques de reconstruction SIM nécessitent une connaissance parfaite de l'illumination de l’échantillon. Cependant, l’implémentation d’un contrôle parfait de l’illumination harmonique sur le plan de l'échantillon n'est pas facile expérimentalement et il présente un grand défi. L’hypothèse de la connaissance parfaite de l’intensité de la lumière illuminant l’échantillon en SIM peut donc introduire des artefacts sur l’image reconstruite de l'échantillon, à cause des erreurs d’alignement de la grille qui peuvent se présenter lors de l’acquisition expérimentale. Afin de surmonter ce défi, nous avons développé dans cette thèse des stratégies de reconstruction «aveugle» qui sont indépendantes de d'illumination. À l'aide de ces stratégies de reconstruction dites «blind-SIM», nous avons étendu la SIM harmonique pour l’appliquer aux cas de «SIM-speckle» qui utilisent des illuminations aléatoires et inconnues qui contrairement à l’illumination harmonique, ne nécessitent pas de contrôle. / Recently, many superresolution fluorescence microscopy techniques have been developed which allow the observation of many biological structures beyond the diffraction limit. Structured illumination microscopy (SIM) is one of them. The principle of SIM is based on using a harmonic light grid which downmodulates the high spatial frequencies of the sample into the observable region of the microscope. The resolution enhancement is highly dependent on the reconstruction technique, which restores the high spatial frequencies of the sample to their original position. Common SIM reconstructions require the perfect knowledge of the illumination pattern. However, to perfectly control the harmonic illumination patterns on the sample plane is not easy in experimental implementations and this makes the experimental setup very technical. Reconstructing SIM images assuming the perfect knowledge of the illumination intensity patterns may, therefore, introduce artifacts on the estimated sample due to the misalignment of the grid that can occur during experimental acquisitions. To tackle this drawback of SIM, in this thesis, we have developed blind-SIM reconstruction strategies which are independent of the illumination patterns. Using the 3D blind-SIM reconstruction strategies we extended the harmonic SIM to speckle illumination microscopy which uses random unknown speckle patterns that need no control, unlike the harmonic grid patterns.
|
2 |
Resolution improvement in fluorescence and phase optical microscopyMudry, Emeric 25 September 2012 (has links) (PDF)
La microscopie optique est une technique essentielle pour de nombreuses disciplines des sciences expérimentales qui nécessitent des résolutions sans cesse plus petites. Dans ce travail de thèse sont présentés plusieurs travaux pour l'amélioration de la résolution en microscopie de fluorescence et en microscopie tomographique par diffraction (MTD), une récente technique de microscopie de phase. Dans un premier temps, il est montré que déposer l'échantillon sur un miroir permet d'augmenter la résolution axiale en MTD et en microscopie confocale de fluorescence. En microscopie confocale, il faut pour cela mettre en forme le faisceau incident grâce à un modulateur spatial de lumière. En MTD, il suffit d'adapter le programme de reconstruction. La deuxième partie présente des algorithmes pour reconstruire des images haute résolution à partir de mesures en éclairement structuré avec de champs d'illumination inconnus, à la fois en microscopie de fluorescence (algorithme blind-SIM) et en MTD. En microscopie de fluorescence, ces algorithmes permettent de simplifier drastiquement les montages expérimentaux produisant l'éclairement structuré et en MTD, d'obtenir des images d'échantillons à fort indice.
|
3 |
Microscopies de fluorescense et de diffraction super-résolues par éclairement multipleGirard, Jules 02 December 2011 (has links)
Ce travail de thèse concerne l'amélioration du pouvoir de résolution de la microscopie optique en champ lointain. Nous avons développé des techniques qui tirent profit de la relation liant le champ électromagnétique émis par un objet à l’éclairement utilisé. En utilisant plusieurs images obtenues pour différents éclairements, et à l’aide d’un algorithme d'inversion approprié, il est possible d'accéder à des fréquences spatiales de l'objet habituellement filtrées par le microscope.Ce concept est d’abord appliqué à une technique de microscopie cohérente : la tomographique optique de diffraction. Elle permet d’obtenir numériquement une carte quantitative de la permittivité diélectrique de l'objet, avec une résolution supérieure à celle d'un microscope classique, à partir de plusieurs hologrammes de l'échantillon. Dans ce cadre, nous montrons que le phénomène de diffusion multiple permet d’atteindre des résolutions encore plus spectaculaires s’il est pris en compte. Nous étudions ensuite la microscopie de fluorescence par éclairement structuré, que nous proposons d’améliorer de deux manières différentes. Dans la première, nous utilisons un algorithme d’inversion capable de retrouver simultanément la densité de fluorescence et les éclairements utilisés. Grâce à celui-ci, nous pouvons remplacer l’illumination périodique et contrôlée généralement utilisée, par des speckles aléatoires formés avec un montage remarquablement simple. Nous montrons expérimentalement l'efficacité de cette approche. Dans un second temps, nous proposons de remplacer la lamelle de verre sur laquelle est repose l’échantillon par un réseau diélectrique nanométrique. Celui-ci crée à sa surface une grille de lumière de période inférieure à la limite de diffraction, ce qui permet d’améliorer d’avantage la résolution finale de l’image reconstruite. Nous détaillons la conception, la fabrication et la caractérisation expérimentale de ce substrat nanostructuré. / This PhD work focuses on the resolution improvement of far-field optical microscopy. We have studied and developed different techniques that take advantage of the relationship between the sample, the illumination and the diffracted (or emitted) field, in order to increase final band-pass of the image beyond that imposed by the diffraction phenomenon. In In these approaches, several images of the same sample are recorded under different illuminations. An inversion algorithm in then used to reconstruct a super-resolved map of the sample from the set of measurements.This concept is first applied to coherent microscopy. In tomographic diffraction microscopy, many holograms of the same unstained sample are obtained under various incidences, then used to numerically reconstruct a quantitative map of permittivity of the sample. The resolution is usually better than that of classical wide-field microscopy. We show theoretically and experimentally that, far from being a drawback, the presence of multiple scattering within the sample can, if properly accounted for, lead a to an even better resolution.We then study structured illumination fluorescence microscopy. We present two different ways for improving this method. The first one takes advantage of an inversion algorithm, which is able to retrieve the fluorescence density without knowing the illumination patterns. This algorithm permits one to replace the periodic light pattern classically used in structured illumination microscopy by unknown random speckle patterns. The implementation of the technique is thus considerably simplified while the resolution improvement remains. In the second approach, we propose to replace the coverslip on which the sample usually lays, by a sub-lambda grating. The latter is used to form, in near field, a light grid with sub-diffraction period that is able to probe the finest details of the sample. The design, fabrication and optical characterization of this key structure are detailed.
|
4 |
Resolution improvement in fluorescence and phase optical microscopyMudry, Emeric 25 September 2012 (has links)
La microscopie optique est une technique essentielle pour de nombreuses disciplines des sciences expérimentales qui nécessitent des résolutions sans cesse plus petites. Dans ce travail de thèse sont présentés plusieurs travaux pour l'amélioration de la résolution en microscopie de fluorescence et en microscopie tomographique par diffraction (MTD), une récente technique de microscopie de phase. Dans un premier temps, il est montré que déposer l'échantillon sur un miroir permet d'augmenter la résolution axiale en MTD et en microscopie confocale de fluorescence. En microscopie confocale, il faut pour cela mettre en forme le faisceau incident grâce à un modulateur spatial de lumière. En MTD, il suffit d'adapter le programme de reconstruction. La deuxième partie présente des algorithmes pour reconstruire des images haute résolution à partir de mesures en éclairement structuré avec de champs d'illumination inconnus, à la fois en microscopie de fluorescence (algorithme blind-SIM) et en MTD. En microscopie de fluorescence, ces algorithmes permettent de simplifier drastiquement les montages expérimentaux produisant l'éclairement structuré et en MTD, d'obtenir des images d'échantillons à fort indice. / Various fields of experimental science are constantly requiring smaller resolution for optical microscopy. In this thesis are presented several works for improving resolution in fluorescence microscopy and in Tomographic Diffraction Microscopy (TDM), an emerging phase microscopy technique. In the first part it is shown that one can improve the axial resolution in depositing the sample on a mirror. In confocal fluorescence microscopy, this is done by shaping the illumination beam with a Spatial Light Modulator. In TDM this is done by adapting the reconstruction method. Then algorithms are proposed for reconstructing high-resolution images from structured illumination measurements with unknown illumination fields, both in fluorescence imaging (blind-SIM algorithm) and in TDM. This allows a dramatical simplification of the experimental set-ups in fluorescence structured illumination and the image reconstruction of high optical index samples in TDM.
|
Page generated in 0.068 seconds