Spelling suggestions: "subject:"aquation cohomologie"" "subject:"aquation homologique""
1 |
Exposants de Lyapunov d’opérateurs de Schrödinger ergodiques / Lyapunov exponents of ergodic Schrödinger operatorsMetzger, Florian 08 June 2017 (has links)
L'objectif de cette thèse est de traiter de deux aspects différents de la théorie de l'exposant de Lyapunov de cocycles de Schrödinger définis par une dynamique ergodique. Dans la première partie, on s'intéresse aux estimées de grandes déviations de type Bourgain & Goldstein pour des cocycles quasi-périodiques, puis pour ceux définis par le doublement de l'angle. Après avoir montré que seule une estimée par dessus sur une bande complexe est nécessaire pour avoir la minoration, on redémontre cette inégalité pour une dynamique quasi-périodique en utilisant des techniques de mouvement brownien en lien avec des fonctions sous-harmoniques. Ensuite on adapte la méthode au cas du doublement de l'angle pour lequel on prouve des estimées de grandes déviations sur les branches inverses de cette dynamique. Dans la deuxième partie sont étudiés des cocycles de Schrödinger dont la dynamique est une somme de dynamiques quasi-périodique et aléatoire. On démontre que, dans le régime perturbatif, les développements asymptotiques de l'exposant de Lyapunov attaché à ces cocycles sont similaires à ceux déjà démontrés dans le cas aléatoire par Figotin & Pastur ou Sadel & Schulz-Baldes. L'analyse se fait en fonction du caractère diophantien ou résonant de l'énergie par rapport à la fréquence diophantienne de la partie quasi-périodique du potentiel. / In this thesis we are interested in the Lyapunov exponent of ergodic Schrödinger cocycles. These cocycles occur in the analysis of solutions to the Schrödinger equation where the potential is defined with ergodic dynamics. We study two distinct aspects related to the the Lyapunov exponent for different kinds of dynamics. First we focus on a large deviation theorem for quasi-periodic cocycles and then for potentials defined by the doubling map. We prove that estimates of Bourgain & Goldstein type are granted if an upper estimate involved in the theorem is true on a strip of the complex plane. Then we establish a new technique to prove this upper bound in the quasi-periodic setting, based on subharmonic arguments suggested by Avila, Jitomirskaya & Sadel. We adapt afterwards the method to the doubling map and prove a large deviation theorem for the inverse branches of this dynamics. In the second part, we establish an asymptotic development similar to the results of Figotin & Pastur and Sadel & Schulz-Baldes for the Lyapunov exponent of Schrödinger cocycles at small coupling when the potential is a mixture of quasi-periodic and random. The analysis distinguishes the cases when the energy is either diophantine or resonant with respect to the frequency of the quasi-periodic part of the potential.
|
2 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesureTriestino, Michele 21 May 2014 (has links) (PDF)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type " Haar " pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire.
|
3 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesure / The dynamics of the generic circle diffeomorphism (with respect to the measure)Triestino, Michele 21 May 2014 (has links)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type « Haar » pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire. / This thesis is divided into three different parts.In the first part, we study the Malliavin-Shavgulidze measure on circle and interval diffeomorphisms. They are Haar-like measures for these infinite-dimensional groups: they were introduced about twenty years ago to help to study their represantation theory. The first chapter collects the results that were obtained in the past years and in some cases we present them under a renewed point of view, with particular attention on quasi-invariance properties for this measures. Then we study some questions of dynamical nature: which is the typical dynamics that we must expect described by a diffeomorphism chosen randomly according to some Malliavin-Shavguldize measure? In particular, we prove that there is a strong presence of Morse-Smale diffeomorphisms.The third chapter comes from the published joint work with Andrés Navas. Inspired by a recent theorem by Avila and Kocsard about the uniqueness of the invariant distribution for a minimal smooth circle diffeomorphism, we analyse the same problem in low regularity, with more geometric arguments.The last part corresponds to the recent results obtained with Mikhail Khristoforov and Victor Kleptsyn. We consider problems in relation with Liouville quantum gravity, by studying self-similar metric spaces which are the limit of finite graphs. We prove that it is possible to find nontrivial random distances on these spaces which are compatible with the self-similar structure.
|
Page generated in 0.0798 seconds