• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphologie des homéomorphismes des surfaces et méthodes géométriques en hydrodynamique

Kolev, Boris 08 June 2006 (has links) (PDF)
Les travaux présentés dans ce mémoire, portent essentiellement sur la théorie géométrique des systèmes dynamiques. Ils sont regroupés dans deux sections distinctes qui couvrent l'essentiel de mes recherches :<ul><li> L'étude de la dynamique et de la morphologie des homéomorphismes des surfaces,</li><li>L'utilisation de méthodes géométriques dans l'étude de certaines équations aux dérivées partielles apparaissant en mécanique et en hydrodynamique.</li></ul>Ce mémoire récapitule les travaux de dix-neuf articles groupés par thèmes et présentés dans l'ordre chronologique de leur élaboration.
2

Dynamique lorentzienne et groupes de difféomorphismes du cercle

Monclair, Daniel 30 June 2014 (has links) (PDF)
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d'isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking.
3

Dynamique lorentzienne et groupes de difféomorphismes du cercle / Lorentzian dynamics and groups of circle diffeomorphisms

Monclair, Daniel 30 June 2014 (has links)
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d’isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking. / This thesis is divided into two parts, dealing with two different aspects of Lorentzian geometry. The first part deals with isometry groups of globally hyperbolic spatially compact Lorentz surfaces, especially when it has a non trivial dynamical behavior (non proper action). The isometry group acts on circle by diffeomorphisms, and the main results of this part concern the classification of these actions. Under a hypothesis on the conformal boundary, we show that they are topologically conjugate to the projective action of a subgroup of PSL(2,R), or one of its finite covers. The differentiability of the conjugacy is studied, with some results giving a differentiable conjugacy under additional hypotheses. We also give counter examples to such a differentiable conjugacy, even for groups with rich dynamics. These constructions use hyperbolic flows on three manifolds. Without the hypothesis on the conformal boundary, we obtain a semi conjugacy and a group isomorphism. We also give examples where a topological conjugacy cannot exist. In the second part of this thesis, we see a spacetime as a multi valued dynamical system: we map a point to its causal future. This point of view was already adopted by Fathi and Siconolfi, and it gives a concrete meaning to the link between Lyapunov functions in dynamical systems and time functions. The main result is a Lorentzian version of Conley's Theorem: we define the chain recurrent set of a spacetime, and construct a continuous function that increases along future directed causal curves outside the chain recurrent set, and that is non decreasing along other future curves. These techniques also apply to the stably causal setting, and we obtain a new proof of a part of Hawking's Theorem.
4

La dynamique des difféomorphismes du cercle selon le point de vue de la mesure

Triestino, Michele 21 May 2014 (has links) (PDF)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type " Haar " pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire.
5

La dynamique des difféomorphismes du cercle selon le point de vue de la mesure / The dynamics of the generic circle diffeomorphism (with respect to the measure)

Triestino, Michele 21 May 2014 (has links)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type « Haar » pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire. / This thesis is divided into three different parts.In the first part, we study the Malliavin-Shavgulidze measure on circle and interval diffeomorphisms. They are Haar-like measures for these infinite-dimensional groups: they were introduced about twenty years ago to help to study their represantation theory. The first chapter collects the results that were obtained in the past years and in some cases we present them under a renewed point of view, with particular attention on quasi-invariance properties for this measures. Then we study some questions of dynamical nature: which is the typical dynamics that we must expect described by a diffeomorphism chosen randomly according to some Malliavin-Shavguldize measure? In particular, we prove that there is a strong presence of Morse-Smale diffeomorphisms.The third chapter comes from the published joint work with Andrés Navas. Inspired by a recent theorem by Avila and Kocsard about the uniqueness of the invariant distribution for a minimal smooth circle diffeomorphism, we analyse the same problem in low regularity, with more geometric arguments.The last part corresponds to the recent results obtained with Mikhail Khristoforov and Victor Kleptsyn. We consider problems in relation with Liouville quantum gravity, by studying self-similar metric spaces which are the limit of finite graphs. We prove that it is possible to find nontrivial random distances on these spaces which are compatible with the self-similar structure.

Page generated in 0.0945 seconds