Spelling suggestions: "subject:"cohomological equation"" "subject:"homological equation""
1 |
Deslocamentos em Z² : equação cohomológica e operadores de transferênciaArtuso, Everton January 2016 (has links)
Nosso objetivo nesse trabalho é estudar o comportamento dos operadores de transferência em f0, 1gN2 , um associado ao deslocamento horizontal (se1 ) e outro associado ao deslocamento vertical (se2 ). Construímos uma equação cohomológica para fins de ampliar a gama de funções às quais os operadores de transferência se aplicam. Estudamos também o comportamento do operador de transferência obtido pela composição dos dois operadores citados e, em condições de comutatividade, encontramos um autovalor e uma autofunção associada, ambos estritamente positivos, e uma automedida para o operador dual, associada ao mesmo autovalor. Tal automedida é um estado de equilíbrio. Além disso, estudamos algumas propriedades ergódicas de transformações de blocos. / In this work we study the behavior of the transfer operators in f0, 1gN2 , one associated with horizontal shift (se1 ) and other associated with vertical shift (se2 ). We build a cohomological equation for the purpose of expanding the range of functions to which the transfer operators apply. We also study the behavior of the transfer operator obtained by the composition of the two cited operators and, in the conditions of commutativity, we find an eigenvalue and an associated eigenfunction, both strictly positive, and an eigen measuse for the dual operator, associated with the same eigenvalue. This eigen measure is an equilibrium state. Furthermore, we study some ergodic properties of block transformations.
|
2 |
Deslocamentos em Z² : equação cohomológica e operadores de transferênciaArtuso, Everton January 2016 (has links)
Nosso objetivo nesse trabalho é estudar o comportamento dos operadores de transferência em f0, 1gN2 , um associado ao deslocamento horizontal (se1 ) e outro associado ao deslocamento vertical (se2 ). Construímos uma equação cohomológica para fins de ampliar a gama de funções às quais os operadores de transferência se aplicam. Estudamos também o comportamento do operador de transferência obtido pela composição dos dois operadores citados e, em condições de comutatividade, encontramos um autovalor e uma autofunção associada, ambos estritamente positivos, e uma automedida para o operador dual, associada ao mesmo autovalor. Tal automedida é um estado de equilíbrio. Além disso, estudamos algumas propriedades ergódicas de transformações de blocos. / In this work we study the behavior of the transfer operators in f0, 1gN2 , one associated with horizontal shift (se1 ) and other associated with vertical shift (se2 ). We build a cohomological equation for the purpose of expanding the range of functions to which the transfer operators apply. We also study the behavior of the transfer operator obtained by the composition of the two cited operators and, in the conditions of commutativity, we find an eigenvalue and an associated eigenfunction, both strictly positive, and an eigen measuse for the dual operator, associated with the same eigenvalue. This eigen measure is an equilibrium state. Furthermore, we study some ergodic properties of block transformations.
|
3 |
Deslocamentos em Z² : equação cohomológica e operadores de transferênciaArtuso, Everton January 2016 (has links)
Nosso objetivo nesse trabalho é estudar o comportamento dos operadores de transferência em f0, 1gN2 , um associado ao deslocamento horizontal (se1 ) e outro associado ao deslocamento vertical (se2 ). Construímos uma equação cohomológica para fins de ampliar a gama de funções às quais os operadores de transferência se aplicam. Estudamos também o comportamento do operador de transferência obtido pela composição dos dois operadores citados e, em condições de comutatividade, encontramos um autovalor e uma autofunção associada, ambos estritamente positivos, e uma automedida para o operador dual, associada ao mesmo autovalor. Tal automedida é um estado de equilíbrio. Além disso, estudamos algumas propriedades ergódicas de transformações de blocos. / In this work we study the behavior of the transfer operators in f0, 1gN2 , one associated with horizontal shift (se1 ) and other associated with vertical shift (se2 ). We build a cohomological equation for the purpose of expanding the range of functions to which the transfer operators apply. We also study the behavior of the transfer operator obtained by the composition of the two cited operators and, in the conditions of commutativity, we find an eigenvalue and an associated eigenfunction, both strictly positive, and an eigen measuse for the dual operator, associated with the same eigenvalue. This eigen measure is an equilibrium state. Furthermore, we study some ergodic properties of block transformations.
|
4 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesure / The dynamics of the generic circle diffeomorphism (with respect to the measure)Triestino, Michele 21 May 2014 (has links)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type « Haar » pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire. / This thesis is divided into three different parts.In the first part, we study the Malliavin-Shavgulidze measure on circle and interval diffeomorphisms. They are Haar-like measures for these infinite-dimensional groups: they were introduced about twenty years ago to help to study their represantation theory. The first chapter collects the results that were obtained in the past years and in some cases we present them under a renewed point of view, with particular attention on quasi-invariance properties for this measures. Then we study some questions of dynamical nature: which is the typical dynamics that we must expect described by a diffeomorphism chosen randomly according to some Malliavin-Shavguldize measure? In particular, we prove that there is a strong presence of Morse-Smale diffeomorphisms.The third chapter comes from the published joint work with Andrés Navas. Inspired by a recent theorem by Avila and Kocsard about the uniqueness of the invariant distribution for a minimal smooth circle diffeomorphism, we analyse the same problem in low regularity, with more geometric arguments.The last part corresponds to the recent results obtained with Mikhail Khristoforov and Victor Kleptsyn. We consider problems in relation with Liouville quantum gravity, by studying self-similar metric spaces which are the limit of finite graphs. We prove that it is possible to find nontrivial random distances on these spaces which are compatible with the self-similar structure.
|
Page generated in 0.113 seconds