Spelling suggestions: "subject:"aquation dde réactiondiffusion"" "subject:"aquation dde reactiondiffusion""
1 |
Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrieBouhours, Juliette 08 July 2014 (has links) (PDF)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords.
|
2 |
Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie / Reaction diffusion equation in heterogeneous media : persistance, propagation and effect of the geometryBouhours, Juliette 08 July 2014 (has links)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords. / In this thesis we are interested in reaction diffusion equations and their applications in biology and medical sciences. In particular we study the existence or non-existence of propagation phenomena in non homogeneous media through the existence of traveling waves or more generally the existence of transition fronts.First we study a bistable reaction diffusion equation in exterior domain modelling the evolution of the density of a population facing an obstacle. We prove that when the obstacle satisfies some regularity properties and is close to a star shaped or directionally convex domain then the population invades the entire domain. We also investigate the optimal regularity conditions that allow a complete invasion of the population. In a second work, we look at a reaction diffusion equation with forced speed, modelling the evolution of the density of a population facing an unfavourable climate change. We prove that depending on the speed of the climate change the population keeps track with the climate change or goes extinct. We also prove that the population, when it survives, propagates with a constant profile at a constant speed at large time. Lastly we consider a bistable reaction diffusion equation in various cylindrical domains, modelling the evolution of a depolarisation wave in the brain. We prove that this wave is blocked when the domain goes from a thin channel to a cylinder, whose diameter is of order 1 and we give general conditions on the geometry of the domain that allow propagation. We also study this problem numerically and prove that for curved cylinders the curvature can block the wave for particular boundary conditions.
|
3 |
Equations de réaction-diffusion dans un environnement périodique en temps - Applications en médecine / Reaction-diffusion equations in a time periodic environment - Applications in medical sciencesContri, Benjamin 06 July 2016 (has links)
Cette thèse est consacrée à l'étude d'équations de réaction-diffusion dans un environnement périodique en temps. Ces équations modélisent l'évolution d'une tumeur cancéreuse en présence d'un traitement qui correspond à une immunothérapie dans la première partie du manuscrit, et à une chimiothérapie cytotoxique dans la suite.On considère dans un premier temps des nonlinéarités périodiques en temps pour lesquelles 0 et 1 sont des états d'équilibre linéairement stables. On étudie l'unicité, la monotonie et la stabilité de fronts pulsatoires. On exhibe également des cas d'existence et de non-existence de telles solutions. Dans la deuxième partie de la thèse, on commence par travailler sur des nonlinéarités périodiques en temps qui sont la somme d'une fonction positive traduisant la croissance de la tumeur et d'un terme de mort de cellules cancéreuses du au traitement. On s'intéresse aux états d'équilibres de telles nonlinéarités, et on va déduire de cette étude des propriétés de propagation de perturbations et l'existence de fronts pulsatoires. On raffine ensuite le modèle en considérant des nonlinéarités qui sont la somme d'une fonction asymptotiquement périodique en temps et d'un terme perturbatif. On prouve notamment que les propriétés relatives à la propagation de perturbations restent valables dans ce cadre là. Pour finir, on s'intéresse à l'influence du protocole de traitement. / This phD thesis investigates reaction-diffusion equations in a time periodic environment. These equations model the evolution of a cancerous tumor in the presence of a treatment that corresponds to an immunotherapy in the firs part of the manuscript, and to a cytotoxic chemotherapy after. We begin by considering time-periodic nonlinearities for which 0 and 1 are linearly stable equilibrium states. We study uniqueness, monotonicity and stability of pulsating fronts. We also provide some conditions for the existence and non-existence of such solutions.In the second part of the manuscript, we begin by working on time-periodic nonlinearities which are the sum of a positive function which stands for the growth of the tumor in the absence of treatment and of a death term of cancerous cells due to treatment. We are interested in equilibrium states of such nonlinearities, and we will infer from this study spreading properties and existence of pulsating fronts. We then refine the model by considering nonlinearities which are the sum of an asymptotic periodic nonlinearity and of a small perturbation. In particular we prove that the spreading properties remain valid in this case. To finish, we are interested in the influence of the protocol of the treatment.
|
4 |
Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitatsDing, Weiwei 03 November 2014 (has links)
Cette thèse concerne les phénomènes de propagation de certaines équations d'évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d'expansion de certaines équations d'intégro-différence spatialement périodiques. Tout d'abord, nous établissons une théorie générale sur l'existence des vitesses de propagation pour des systèmes d'évolution noncompacts, sous l'hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d'irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tout opérateur de convolution généré par une telle mesure admet une valeur propre principale. Enfin, nous prouvons l'existence de vitesses de propagation pour certains équations d'intégro-différence avec des noyaux de dispersion uniformément irréductibles. Dans la deuxième partie, nous étudions les phénomènes de propagation de front pour des équations de réaction-diffusion spatialement périodiques avec des non-linéarités bistables. Nous nous concentrons d'abord sur les solutions de type fronts pulsatoires. Sous diverses hypothèses, il est prouvé que les fronts pulsatoires existent lorsque la période spatiale est petite ou grande. Nous caractérisons aussi le signe des vitesses et nous montrons la stabilité exponentielle globale des fronts pulsatoires de vitesse non nulle. Nous étudions ensuite les solutions de type fronts de transition. Sous des hypothèses convenables, on prouve que les fronts de transition se ramènent aux fronts pulsatoires avec une vitesse non nulle. Mais nous montrons aussi l'existence de nouveaux types de fronts de transition qui ne sont pas des fronts pulsatoires. / This dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts.
|
Page generated in 0.1132 seconds