Spelling suggestions: "subject:"buthanol cellulosiques"" "subject:"buthanol cellulosic""
1 |
Optimisation de l'extraction, en réacteur "batch", de biomasse énergétique à l'aide d'émulsions ultrasoniques de solvants vertsGelebart, Bénédicte January 2016 (has links)
L’industrie des biocarburants de deuxième génération utilise, entre autre, la biomasse lignocellulosique issue de résidus forestiers et agricoles et celle issue de cultures énergétiques. Le sorgho sucré [Sorghum bicolor (L.) Moench] fait partie de ces cultures énergétiques. L’intérêt croissant de l’industrie agroalimentaire et des biocarburants pour cette plante est dû à sa haute teneur en sucres (jusqu’à 60% en masse sèche). En plus de se développer rapidement (en 5-6 mois), le sorgho sucré a l’avantage de pouvoir croître sur des sols pauvres en nutriments et dans des conditions de faibles apports en eau, ce qui en fait une matière première intéressante pour l’industrie, notamment pour la production de bioéthanol. Le concept de bioraffinerie alliant la production de biocarburants à celle de bioénergies ou de bioproduits est de plus en plus étudié afin de valoriser la production des biocarburants. Dans le contexte d’une bioraffinerie exploitant la biomasse lignocellulosique, il est nécessaire de s’intéresser aux différents métabolites extractibles en plus des macromolécules permettant la fabrication de biocarburants et de biocommodités. Ceux-ci pouvant avoir une haute valeur ajoutée et intéresser l’industrie pharmaceutique ou cosmétique par exemple. Les techniques classiques pour extraire ces métabolites sont notamment l’extraction au Soxhlet et par macération ou percolation, qui sont longues et coûteuses en énergie. Ce projet s’intéresse donc à une méthode d’extraction des métabolites primaires et secondaires du sorgho sucré, moins coûteuse et plus courte, permettant de valoriser économiquement l’exploitation industrielle du de cette culture énergétique. Ce travail au sein de la CRIEC-B a porté spécifiquement sur l’utilisation d’une émulsion ultrasonique eau/carbonate de diméthyle permettant de diminuer les temps d’opération (passant à moins d’une heure au lieu de plusieurs heures) et les quantités de solvants mis en jeu dans le procédé d’extraction. Cette émulsion extractive permet ainsi de solubiliser à la fois les métabolites hydrophiles et ceux hydrophobes. De plus, l’impact environnemental est limité par l’utilisation de solvants respectueux de l’environnement (80 % d’eau et 20 % de carbonate de diméthyle). L’utilisation de deux systèmes d’extraction a été étudiée. L’un consiste en la recirculation de l’émulsion, en continu, au travers du lit de biomasse; le deuxième permet la mise en contact de la biomasse et des solvants avec la sonde à ultrasons, créant l’émulsion et favorisant la sonolyse de la biomasse. Ainsi, en réacteur « batch » avec recirculation de l’émulsion eau/DMC, à 370 mL.min[indice supérieur -1], au sein du lit de biomasse, l’extraction est de 37,91 % en 5 minutes, ce qui est supérieur à la méthode ASTM D1105-96 (34,01 % en 11h). De plus, en réacteur « batch – piston », où la biomasse est en contact direct avec les ultrasons et l’émulsion eau/DMC, les meilleurs rendements sont de 35,39 % en 17,5 minutes, avec 15 psig de pression et 70 % d’amplitude des ultrasons. Des tests effectués sur des particules de sorgho grossières ont donné des résultats similaires avec 30,23 % d’extraits en réacteur « batch » avec recirculation de l’émulsion (5 min, 370 mL.min[indice supérieur -1]) et 34,66 % avec le réacteur « batch-piston » (30 psig, 30 minutes, 95 % d’amplitude).
|
2 |
Hydrolyse thermochimique de la cellulose et récupération des acides/bases utilisés dans un contexte de production d’éthanol cellulosiqueBerberi, Véronique January 2011 (has links)
L’éthanol produit à partir de céréales entraine une augmentation de leur prix, le tout ayant un impact négatif sur l’approvisionnement des denrées alimentaires. Or, la production d’éthanol peut aussi être faite à partir de résidus forestiers et de résidus agricoles. Les compagnies désirant produire l’éthanol cellulosique ont de la difficulté à le faire, notamment en raison du coût très élevé du procédé d’hydrolyse de la cellulose (cellulose→glucoses). Une nouvelle technique d’hydrolyse thermochimique de la cellulose conçue conjointement par la compagnie CRB Innovations et la Chaire de recherche en éthanol cellulosique de l’Université de Sherbrooke permettrait peut-être de réduire ce coût, si les produits chimiques utilisés pour cette hydrolyse sont recyclés dans le procédé. L’objectif principal de la recherche est donc la conception d’un procédé permettant l’hydrolyse de la cellulose et le recyclage des produits chimiques utilisés. Le procédé conçu doit être techniquement et économiquement réalisable à l’échelle industrielle. Le procédé développé dans le cadre de cette recherche implique : 1) un fractionnement de la biomasse en ses différents constituants telle qu’en cellulose, 2) un prétraitement acide de la cellulose de 1 h avec 72 % H[indice inférieur 2]SO[indice inférieur 4], 3) une neutralisation partielle avec hydroxyde d’ammonium, 4) une hydrolyse de la cellulose de 75 minutes à 100ᵒC, suivit d’une microfiltration 5) l’enlèvement de l’acide sulfurique du filtrat contenant le glucose par adsorption sur résine basique échangeuse d’anion, 6) une concentration de l’acide sulfurique par évaporateur par compression mécanique de la vapeur, suivit d’un recyclage de l’acide sulfurique concentré, 7) une séparation du glucose et du sulfate d’ammonium par électrodialyse ou par exclusion ionique dans un système de chromatographie par SMB, 8) une concentration de la solution de glucose purifiée par osmose-inverse, 9) une conversion du glucose en éthanol par des levures en bioréacteur, 10) une transformation du sulfate d’ammonium en acide sulfurique et en ammoniac gazeux par pyrolyse, suivit d’un recyclage de l’ammoniac et de l’acide. Ce procédé permet la récupération d’environ 90 % des produits chimiques tout en évitant la perte de plus de 10% du glucose. Une deuxième possibilité serait d’utiliser de l’hydroxyde de sodium plutôt que de l’hydroxyde d’ammonium, puis de reformer l’acide sulfurique et l’hydroxyde de sodium à partir du sulfate de sodium grâce à une électrolyse membranaire, cette technologie permettant la purification du glucose par le fait même. Cette méthode permet d’obtenir une conversion de la cellulose en glucose et une récupération des produits chimiques semblables à la méthode précédente. Afin de réaliser ce projet, les différentes techniques de séparation possible ont été déterminées grâce à une revue de la littérature, puis des expérimentations ont permis d’estimer les rendements de séparations ainsi que le coût énergétique associé à chacune des techniques.
|
3 |
Optimisation de l'extraction des carbohydrates solubles de la biomasse du sorgho sucré et du millet perlé sucré et valorisation de la bagasseSaïed, Noura 10 January 2024 (has links)
Thèse ou mémoire avec insertion d'articles / L'utilisation du sorgho sucré [Sorghum bicolor (L.) Moench] et du millet perlé sucré [Pennisetum glaucum (L.) R.BR.] comme cultures énergétiques au Québec a gagné de l'intérêt ces dernières années. Leur sève riche en carbohydrates solubles dans l'eau peut être fermentée pour une éventuelle production d'éthanol. Leur particularité réside dans leur utilisation efficace des fertilisants azotées et de l'eau par comparaison au maïs, la seule culture utilisée actuellement pour produire de l'éthanol au Québec. Différentes études s'intéressant à la régie de culture de ces deux plantes ainsi qu'à leur récolte, à l'entreposage de la biomasse et à l'extraction du jus et son entreposage, ont été effectuées. Cependant, la valorisation du résidu de pressage (appelé bagasse) nécessite d'être explorée davantage. L'objectif général de cette thèse était d'optimiser l'extraction des carbohydrates solubles dans l'eau à partir de la biomasse du sorgho sucré et du millet perlé sucré pressée à l'aide d'une presse hydraulique et de valoriser la bagasse générée pour une éventuelle production d'éthanol cellulosique ou pour en faire de l'ensilage. L'extraction du jus à partir de la biomasse du sorgho sucré et du millet perlé sucré a été effectuée à l'aide d'une presse hydraulique de laboratoire. L'optimisation de l'extraction des carbohydrates solubles a été basée sur deux pressages de la biomasse avec imprégnation de la bagasse avec de l'eau avant le deuxième pressage. Les effets de deux types de hachages (grossier ou fin), quatre ratios eau:bagasse (0,5; 1; 1,5 et 2) et trois températures de l'eau d'imprégnation (25, 45 et 65 °C) sur l'extraction des carbohydrates solubles ont été étudiés. Le potentiel de la bagasse générée par le processus de pressage optimisé a été exploré pour une éventuelle production d'éthanol cellulosique. Pour ce faire, la bagasse a été réduite en deux tailles (4,5-9 mm et 1 mm), prétraitée à l'aide de l'acide sulfurique ou de l'hydroxyde de sodium à deux concentrations (1% et 3%) puis saccharifiée enzymatiquement. L'effet de ces paramètres sur la libération de carbohydrates structuraux a été déterminé et les rendements en éthanol de première génération et cellulosique ont été calculés basé sur ces résultats puis prédits en tenant compte du rendement de ces cultures au Québec. Afin d'étudier le potentiel d'un pressage au champ de la biomasse de sorgho et de millet perlé sucrés, trois ratios eau:bagasse (0,5; 1 et 1,5) ont été considérés pour l'imprégnation de la bagasse avant le deuxième pressage. Les bagasses générées ont été ensilées et leurs qualités de conservation et nutritives ont été évaluées. Pour l'extraction de carbohydrates solubles en laboratoire, presser la biomasse grossièrement hachée (4,5-9 mm) deux fois tout en imprégnant la bagasse avec de l'eau à 25 °C selon un ratio eau:bagasse de 1 juste avant le deuxième pressage était la condition optimale. Sous cette condition, les rendements d'extraction de carbohydrates solubles étaient de 83% et 78% pour le sorgho sucré et le millet perlé sucré, respectivement. Le rendement en éthanol de première génération a été prédit à 871-1267 L.ha⁻¹ pour le sorgho sucré et à 600-1188 L.ha⁻¹ pour le millet perlé sucré. Le prétraitement de la bagasse générée avec de l'hydroxyde de sodium à 3% était la condition la plus appropriée pour l'obtention d'éthanol cellulosique en favorisant la libération des carbohydrates structuraux après saccharification enzymatique. En effet, la cellulose a été saccharifiée à 88% et 73% pour le sorgho et le millet, respectivement, ce qui a généré une concentration en glucose de 320 et 249 g.kg⁻¹ MS de bagasse, respectivement. Ainsi, les rendements en éthanol cellulosique prédits ont varié de 1527-2221,6 et 1185-2347 L.ha⁻¹ pour le sorgho et le millet, respectivement. Pour le pressage du sorgho et du millet au champ, un ratio d'imprégnation eau:bagasse de 0,5 a été adéquat pour l'extraction des carbohydrates solubles résiduels. Dans ce contexte, un rendement d'extraction des carbohydrates solubles totaux (initiaux + résiduels) de 50% a été obtenu pour le sorgho contre 46% pour le millet, à la suite de deux pressages. La concentration des carbohydrates solubles résiduels dans les bagasses de deuxième pressage ont permis une fermentation adéquate des ensilages. Malgré la teneur élevée en fibres ADF et NDF des ensilages, les digestibilités in vitro de la matière sèche (IVTD) et des fibres NDF (NDFd) étaient bonnes, surtout pour le sorgho sucré. Cela pourrait procurer à la bagasse de sorgho sucré un potentiel intéressant en alimentation animale. / The use of sweet sorghum [Sorghum bicolor (L.) Moench] and sweet pearl millet [Pennisetum glaucum (L.) R.BR.] as energy crops in Quebec has gained interest in recent years. Their sap rich in water soluble carbohydrates can be fermented for an eventual production of ethanol. Their particularity lies in their efficient use of nitrogen fertilizers and water compared to corn, the only crop currently used for ethanol production in Québec. Various studies focusing on the cultivation management of these crops as well as their harvesting, the storage of the biomass, and the extraction of the juice and its storage have been carried out. However, the valorization of the pressing residue (called bagasse) still needs to be further explored. The general objective of this thesis was to optimize the extraction of water soluble carbohydrates from sweet sorghum and sweet pearl millet biomass pressed using a hydraulic press and to valorize the generated bagasse for eventual cellulosic ethanol production or for making silage. Juice extraction from sweet sorghum and sweet pearl millet biomass was performed using a laboratory hydraulic press. The optimization of soluble carbohydrate extraction was based on two pressings of the biomass with impregnation of the bagasse with water before the second pressing. The effect of two chopping modes (coarse or fine), four water:bagasse ratios (0.5, 1, 1.5, and 2), and three water temperatures (25, 45, and 65 °C) on the extraction of soluble carbohydrates have been studied. The bagasse generated from the optimized pressing process was investigated for an eventual production of cellulosic ethanol. For this purpose, the bagasse was reduced in two sizes (4.5-9 mm and 1 mm), pretreated either with sulfuric acid or with sodium hydroxide at two concentrations (1% and 3%) and then enzymatically saccharified. The effect of these parameters on structural carbohydrate release was determined and the first generation and cellulosic ethanol yields were predicted based on the yield of these plant species in Quebec. For an in-field pressing of sorghum and millet biomass, three water:bagasse ratios (0.5, 1, and 1.5) were considered for bagasse impregnation before the second pressing. The bagasses generated were ensiled and their conservation and nutritive qualities were evaluated. For the extraction of soluble carbohydrate in the laboratory, pressing the coarsely chopped biomass (4.5-9 mm) twice while impregnating the bagasse with water at 25 °C according to a water:bagasse ratio of 1 just before the second pressing was the optimal condition. Under this condition, extraction yields of soluble carbohydrates were 83% and 78% for sweet sorghum and sweet pearl millet, respectively. First generation ethanol yields of 871-1267 L.ha⁻¹ and 600-1188 L.ha⁻¹ were predicted for sweet sorghum and sweet pearl millet, respectively. Pretreatment of the generated bagasse with 3% sodium hydroxide was the most suitable condition to produce cellulosic ethanol by efficiently releasing structural carbohydrates after enzymatic saccharification. Indeed, the cellulose was saccharified at 88% and 73% for sorghum and millet, respectively, which generated a glucose concentration of 320 and 249 g.kg⁻¹ DM of bagasse, respectively. Thus, cellulosic ethanol yields ranging from 1527-2221.6 and 1185-2347 L.ha⁻¹ were predicted for sorghum and millet, respectively. For in-field pressing of sorghum and millet, a water:bagasse ratio of 0.5 was adequate for the extraction of residual soluble carbohydrates. In this context, an extraction yield of total soluble carbohydrates (initial + residual) of 50% was obtained for sorghum against 46% for millet, following two pressings. The concentration of residual soluble carbohydrates in the second pressing bagasse allowed adequate fermentation of the silages. Despite the high content of ADF and NDF fibers in silage, in vitro true digestibilities of dry matter (IVTD) and NDF fibers (NDFd) were good especially for sweet sorghum. Sweet sorghum silage from bagasse could thus have a good potential in animal feed.
|
Page generated in 0.0784 seconds