• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 40
  • 19
  • 1
  • Tagged with
  • 229
  • 116
  • 111
  • 85
  • 83
  • 71
  • 64
  • 63
  • 58
  • 57
  • 57
  • 56
  • 55
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Formation of supermassive black holes / Formation de trous noirs supermassifs

Habouzit, Mélanie 15 September 2016 (has links)
Des trous noirs supermassifs (TNs) de plusieurs millions de masses solaires occupent le centre de la plupart des galaxies proches. La découverte du TN Sagittarius A* au centre de notre galaxie, La Voie lactée, l'a confirmé. Pour autant, certaines galaxies semblent dépourvues de TNs (par exemple NGC205, M33), ou alors ne posséder un TN que de quelques milliers de masses solaires. D'autre part, des TNs dans leur forme la plus lumineuse, appelés quasars, dont la luminosité est plus importante que des centaines de fois celle d'une galaxie toute entière, ont été observés à très grand décalage spectral, lorsque l'Univers n'était alors âgé que d'un milliard d'années. Les modèles de formation des TNs doivent expliquer à la fois l'existence des TNs de faibles masses observés aujourd'hui dans les galaxies de faibles masses, mais aussi leur prodigieux homologues quasars dans l'Univers jeune. La formation des TNs pose encore de nos jours de nombreuses questions: comment se forment les TNs au début de l'histoire de l'Univers? Quelle est leur masse initiale? Quelle est la masse minimale d'une galaxie pour posséder un TN? Pour répondre à ces questions et pour étudier la formation des TNs dans le contexte de l'évolution des galaxies, nous avons utilisé des simulations hydrodynamiques cosmologiques, qui offrent l'avantage de suivre l'évolution temporelle de nombreux processus comme la formation stellaire, l'enrichissement en métaux, les mécanismes de rétroactions des TNs et des supernovae. J'ai particulièrement dirigé mes recherches sur les trois principaux modèles de formation des TNs à partir du reliquat des premières étoiles, d'amas d'étoiles, ou encore par effondrement direct. / Supermassive black holes (BHs) harboured in the center of galaxies have been confirmed with the discovery of Sagittarius A* in the center of our galaxy, the Milky Way. Recent surveys indicate that BHs of millions of solar masses are common in most local galaxies, but also that some local galaxies could be lacking BHs (e.g. NGC205, M33), or at least hosting low-mass BHs of few thousands solar masses. Conversely, massive BHs under their most luminous form are called quasars, and their luminosity can be up to hundred times the luminosity of an entire galaxy. We observe these quasars in the very early Universe, less than a billion years after the Big Bang. BH formation models therefore need to explain both the low-mass BHs that are observed in low-mass galaxies today, but also the prodigious quasars we see in the early Universe.BH formation is still puzzling today, and many questions need to be addressed: How are BHs created in the early Universe? What is their initial mass? How many BHs grow efficiently? What is the occurrence of BH formation in high redshift galaxies? What is the minimum galaxy mass to host a BH? We have used cosmological hydrodynamical simulations to capture BH formation in the context of galaxy formation and evolution. Simulations offer the advantage of following in time the evolution of galaxies, and the processes related to them, such as star formation, metal enrichment, feedback of supernovae and BHs. We have particularly focused our studies on the three main BH formation models: Pop III remnant, stellar cluster, and direct collapse models.
182

Étude des phénomènes explosifs en astrophysique dans les sursauts gamma et les supernovæ / Studying explosive phenomena in astrophysics by the example of gamma-ray bursts and supernovae

Filina, Anastasia 01 July 2015 (has links)
La formation des premières étoiles, quelques centaines de millions d'années après le Big Bang, marque la fin de l’âge sombre. Actuellement, nous n’avons aucune observation de la formation de ces étoiles, appelée popIII, mais d’après des simulations numériques de différents groupes, il semblerait que ces étoiles primordiales étaient très massives: plusieurs centaines de masses solaires. Ces premières étoiles, ont produits aussi des sursauts gamma (GRBs). Ainsi, l’étude des GRBs produits à partir des popIII, pourraient permette d’étudier directement le stade final des étoiles primordiales. Les télescopes d'aujourd'hui ne peuvent pas regarder assez loin dans le passé cosmique pour observer la formation des premières étoiles, mais la nouvelle génération de télescopes permettra de tester des idées théoriques sur la formation des premières étoiles.Les GRBs sont liés à la mort d’étoiles massives et qu'ils sont connectés avec des supernovae. En ce sens, les GRBs sont l'une des classes de processus explosifs en physique stellaire et devraient suivre les mêmes lois physiques que l'explosion des supernovae. Ce travail tente d'aborder le problème des GRBs comme un problème d'explosion stellaire et utilise les données d’observation sur les spectres et les courbes de lumières notamment.Dans le cadre de cette thèse, des outils spécifiques ont été développés pour étudier les explosions stellaires: un code numérique pour résoudre les réactions nucléaires a été incorporé dans le code hydrodynamique existant. Ces outils ont été utilisés dans les simulations de supernovae afin d’étudier les connections avec les sursauts gamma: analyse spectrale et étude statistique en fonction du redshift. / The formation of the first stars hundreds of millions of years after the Big-Bang marks the end of the Dark Ages. Currently, we have no direct observations on how the primordial stars formed, but according to modern theory of stellar evolution these stars should be very massive (about 100 Msun) Population III stars have a potential to produce probably most energetic flashes in the Universe - gamma-ray bursts. GRBs may provide one of the most promising methods to probe directly final stage of life of primordial stars. Today's telescopes cannot look far enough into the cosmic past to observe the formation of the first stars, but the new generation of telescopes will test theoretical ideas about the formation of the first stars.Thanks to many years of observations we have good GRB's data -statistics of occurrence, spectrum, lightcurves. But there are still a lot of questions in the theory of GRBs. We know that GRBs are related to the death of stars and that they are connected with supernovae. So gamma-ray bursts are one of the classes of explosive processes in stellar physics that should have a lot of common with supernovae explosions. In that case GRBs should follow the same physical laws of explosion as supernovae. This work tries to approach the problem of GRBs as a problem of stellar explosion.Necessary instruments of studying stellar explosion were developed as a part of doctoral research: code for solving systems of nuclear reaction equations was incorporated into hydrodynamical code. These tools were applied for supernovae simulations in order to find possible connection with GRBs. Basing on analysis of supernovae simulations spectral analysis of GRBs was performed.
183

Observations et modélisations spectro-interférométriques longue base des étoiles et de leur environnement proche / Long baseline spectro-interferometric observing and modeling of stars and their close environment

Hadjara, Macinissa 31 March 2015 (has links)
Cette thèse présente les résultats d'observations d'étoiles en rotation rapide menées sur le spectro-interféromètre AMBER du VLTI dans ses modes haute et moyenne résolutions spectrales. Les mesures effectuées sont les visibilités estimées sur trois bases simultanées, les phases différentielles en fonction de la longueur d'onde et des phases de clôtures avec, pour certaines nuits une bonne couverture du plan (u,v). Les données utilisées sont issues de plusieurs campagnes d'observation. Ces dernières étaient fortement dégradées par les défauts optiques d'AMBER, et affectés par des bruits classiques d'interférométrie optique à longue base en IR: défauts du détecteur, bruit de lecture, instabilités du suiveur de franges, ...etc. Leur analyse a nécessité la mise au point d'outils numériques de réduction spécifiques pour atteindre les précisions nécessaires à l'interprétation de mesures interférométriques. Pour interpréter ces mesures j'ai développé un modèle semi-analytique chromatique d'étoile en rotation rapide qui m'a permis d'estimer, à partir des phases différentielles; le degré d'aplatissement, le rayon équatorial, la vitesse de rotation, l'angle d'inclinaison, l'angle position de l'axe de rotation de l'étoile sur le ciel, la distribution de la température effective locale et de la gravité à la surface de l'étoile dans le cadre du théorème de von Zeipel. Les résultats concernant 4 étoiles massives de types spectraux B, A et F m'ont permis de les caractériser pour les mécanismes évoqués ci-dessus et d'ouvrir ainsi la perspective d'études plus systématiques d'objets similaires en étendant ultérieurement ces études à la relation photosphère-enveloppe circumstellaire. / This thesis presents the results of rapidly rotating stars observations conducted on the AMBER spectro-interferometer VLTI in its high average spectral modes and resolutions. The measurements are estimated on three simultaneous visibility bases, differential phases depending on the wavelength and closure phases, with good coverage of the (u, v) plane for some nights. The data used are from several observation campaigns. These were highly degraded by the optical defects of AMBER, and assigned by standard optical interferometry long base IR noises: defects of the detector, reading noise, fringes follower instabilities, ... etc. Their analysis required the development of digital reduction of specific tools to achieve the necessary details to the interpretation of interferometric measurements. In interpreting these measures I developed a chromatic semi-analytical model of rapidly rotating star that allowed me to estimate, from the differential phases; the degree of flattening, the equatorial radius, speed of rotation, angle of inclination, the position angle of the star rotation axis in the sky, the local distribution of the actual temperature and the gravity to the surface of the star within the von Zeipel theorem. The results for four massive stars of spectral type B, A and F have allowed me to characterize the mechanisms discussed above and thus open framework for more systematic studies of similar objects subsequently extending these studies to the relationship photosphere circumstellar envelope.
184

Étude de l'influence de la perte de masse sur l'évolution d'étoiles de plusieurs types

Vick, Mathieu 10 1900 (has links)
No description available.
185

Étude de la pulsation des étoiles de type RR Lyrae et de l’effet Blazhko / A study of RR Lyrae stars pulsation and Blazhko effect

Zalian-Rahatabad, Cyrus 14 October 2016 (has links)
Cette thèse propose une nouvelle théorie de l’effet Blazhko. Elle apporte également une justification théorique à certaines observations encore inexpliquées : la décroissance des harmoniques de la courbe de lumière ; l’asymétrie des enveloppes et des lobes ainsi que la variation des temps de montée et de descente dans le cas de l’effet Blazhko ; la synchronisation des couches et l’existence des trois types d’étoiles RR Lyrae : RRab, RRc et RRd. La première partie présente une étude extensive d’une étoile RR Lyrae avec effet Blazhko : S Arae. Nous débutons par une définition rigoureuse de l’analyse harmonique des courbes de lumière. Cette démarche, encore jamais entreprise en astéroséismologie, permet une meilleure interprétation des habituels résultats des études photométriques. Nous poursuivons avec une présentation du programme d’analyse fréquentielle que nous avons développé : PDM13. Nous établissons ensuite le spectre fréquentiel de la courbe de lumière de S Arae et, à la présentation des résultats de cette étude, nous apportons une démonstration mathématique à deux observations communément effectuées : la décroissance des harmoniques et l’asymétrie de modulation. Dans la deuxième partie, après un rappel des mécanismes d’oscillation, nous présentons une nouvelle modélisation discrète, et non linéaire, des équations de pulsations. Celle-ci nous permettra d’expliquer les phénomènes de synchronisation, mais surtout, conduira à une nouvelle théorie du phénomène Blazhko fondée sur l’existence de solitons, que nous étayerons par des premiers résultats, obtenus grâce à l’utilisation d’un nouvel outil : la transformée en ondelettes / In this thesis we develop a new theory of the Blazhko effect. We also provide a theoretical justification to the following commonly observed facts: the light curve harmonics decrease; the asymetry of envelopes and sidelobes ; the synchronization of layers and the mode selection. The first part of this thesis is dedicated to the extensive study of a RR Lyrae star presenting the Blazhko effect: S Arae. Firstly, a rigorous definition of harmonic analysis applied to light curves is given. This work, which has never been undertaken in the asteroseismology field, up to now, allows a better interpretation of the usual results of photometric studies. We carry on with the presentation of a software that we have developed, dedicated to frequency analysis: PDM13. After that, we perform the usual analysis of the frequency spectrum of the light curve, which we complete we two rigorous demonstrations of commonly observed facts: the harmonics decrease and the asymmetry induced by modulation. We complete it with a study of the parameters which vary during a Blazhko cycle, on which we will capitalize to understand this modulation effect. The second part begins with a reminder of the basic perturbed and linearized equations of stellar pulsation together with the oscillation mechanisms. We pursue this presentation with a non linear and discrete formalism that we have developed for these equations. This formalism will allow us to underline the importance of synchronization in those stars, but, most of all, it will lead us to a new theory of the Blazhko effect, based on solitons, which will be supported by a new results obtained with the wavelet transform method
186

Reflected Light of Exoplanets : a case study of WASP-43b using the Hubble Space Telescope

Gupta, Prashansa 12 1900 (has links)
Avec près de 4000 exoplanètes connues, le domaine est passé de simplement détecter des exoplanètes à étudier leurs propriétés atmosphériques. Cependant, les spectres en lumières réfléchies de ces objets sont encore mal compris. Les exoplanètes réfléchissent une partie de la lumière qu’elles reçoivent de leur étoile, selon les propriétés de l’atmosphère, ce qui affecte le budget énergétique de la planète. Les Jupiters chaudes, c’est-à-dire des planètes de types Jupiter avec des périodes orbitales très courtes, sont les cibles les plus faciles à observer par spectroscopie des éclipses. L’albédo est une mesure directe de la lumière réfléchie qui peut être mesurée pendant que la planète passe derrière l’étoile hôte. Dans leur cas spécifique, une incohérence apparente, appelée le problème d’albédo des Jupiters chaudes, reste non résolu. Alors que les géantes gazeuses du système solaire ont des albédos de Bond inférieurs aux albédos géométriques, les mesures dans le visible et l’infrarouges pour HD 189733b et HD 209458b indiquent le contraire. Ceci pourrait être expliqué par des albédos géométriques plus élevés à des longueurs d’onde UV/visibles hors de la bande passante de Kepler, mais très peu de mesures existent pour corroborer cela. Ce mémoire présente le spectre de réflexion complet de WASP-43b, incluant 3 mesures d’éclipse obtenues par le HST (290-570 nm) ainsi que 28 obtenues par la mission TESS (600-1000 nm). Lorsque combinées avec les observations Spitzer ou les observations d’éclipse du JWST à venir, ces mesures répondront à des questions-clés concernant la structure et composition atmosphérique de la planète, le budget énergétique global et sa circulation. / With nearly 4000 exoplanets known, the field has evolved from merely detecting exoplanets to actually probing atmospheric properties. However, reflected light spectra from these objects are still not fully understood. Exoplanets reflect a portion of the light that they receive from the star, the amount of which depends on the properties of the atmosphere and in turn affects the energy budget of the planet. Hot Jupiters, i.e. Jupiter-like planets giants with very short orbital periods are the easiest targets amenable to eclipse spectroscopy. Albedo is a direct measure of reflected light that can be measured while the planet eclipses behind the host star. In the specific case of these intriguing planets, an apparent inconsistency, termed as the hot Jupiter Albedo Problem, remains unsolved. While Solar System gas giants show Bond albedos lower than geometric albedos, the measurements from optical and infrared instruments for HD 189733b and HD 209458b show the opposite. This phenomenon has the potential to be explained by higher geometric albedos at UV/optical wavelengths outside the Kepler bandpass, but very few measurements exist to corroborate this. This thesis presents WASP-43b’s full reflection spectrum, including 3 eclipse measurements obtained by the HST (290-570 nm) along with 28 obtained by the TESS mission (600-1000 nm). When combined with the Spitzer or the upcoming JWST’s eclipse observations, these measurements will answer key questions about the planet’s atmospheric composition and structure, global energy budget and circulation.
187

Étude à haute résolution spatiale de la bulle Wolf-Rayet NGC 2359 avec des données SITELLE et GMOS

Dumontier, Cyril 06 1900 (has links)
Ce mémoire présente une étude spectroscopique de la nébuleuse Wolf-Rayet (WR) NGC 2359 à l’aide d’un ensemble de données recueillies avec le spectromètre imageur SITELLE et le spectromètre GMOS depuis 2018. Cette étude vise à approfondir nos connaissances sur cette nébuleuse ionisée par une étoile massive au stade final de sa vie, WR7, afin de localiser et de caractériser la section de la nébuleuse associée aux éjecta passés de l’étoile. L’analyse de l’ensemble de données permet d’identifier dans un premier temps les raies d’émission de plusieurs atomes à des états d’ionisation différents et dans un deuxième temps d’identifier les zones où ces raies sont les plus fortes à l’aide de la production de cartes de flux pour chacune d’entre elles. Deux structures sont associées au gaz ionisé de la nébuleuse. La première est en forme d’arc et est à la frontière à l’est de WR7 qui sépare le gaz ionisé du gaz atomique. La deuxième est une bulle filamenteuse qui a un état d’ionisation plus élevé que celui de l’arc par son flux très faible dans les raies d’émission d’atomes simplement ionisés, mais fort dans les raies d’atomes doublement ionisés. L’analyse cinématique vient ajouter des distinctions supplémentaires entre les deux structures. L’arc est immobile à 54 km s⁻¹ qui est la vitesse radiale systémique du gaz attendue à sa distance galactocentrique. La bulle démontre plutôt des groupes de filaments qui s’approchent de l’observateur et d’autres qui s’en éloignent, donnant une expansion de ∼ 30 km s⁻¹. De plus, ces résultats confirment le contact dynamique entre le gaz ionisé en expansion et le gaz moléculaire de CO allant à des vitesses similaires à des positions similaires. Ensuite, certains rapports d’intensité de raies sensibles à la présence de poussière, à la température électronique ou à la densité électronique permettent de cartographier ces propriétés. La poussière causant un rougissement interstellaire est surtout distribuée à l’est et au sud de la nébuleuse. La densité électronique est maximalement de 190 cm⁻³ et généralement inférieure à 100 cm⁻³. En supposant une densité électronique constante de 100 cm⁻³, la carte de la température électronique montre des valeurs entre 9 000 et 14 000 K. / This work presents a spectroscopic study of the Wolf-Rayet (WR) nebula NGC 2359 using a set of data collected with the SITELLE imaging spectrograph and the GMOS spectrograph since 2018. The study aims to deepen our understanding of this nebula ionized by a massive star in the final stage of its life, in order to determine which gas structure of the nebula is associated with the past ejecta of the star. The analysis of the data set first identified emission lines of several atoms in different ionization states, and then identified the areas where these lines are strongest by producing flux maps for each of the identified lines. Two structures are associated with the ionized gas of the nebula. The first is arc-shaped and is at the western boundary separating the ionized gas from the atomic gas. The second is a filamentary bubble with a higher ionization state than the arc due to its very weak flux in the emission lines of singly ionized atoms, but strong in the lines of doubly ionized atoms. The kinematic analysis adds further distinctions between the arc and the bubble. The arc is stationary at 54 km s⁻¹ , which is the systemic radial velocity of the gas expected at its galactocentric distance. The bubble shows groups of filaments approaching and receding from the observer, demonstrating an expansion at 30 km s⁻¹. These results confirm the dynamic contact between the expanding ionized gas and the CO molecular gas moving at similar speeds in similar locations. Furthermore, some intensity ratios of lines sensitive to the presence of dust, electron temperature, and electron density allow for mapping these quantities. Dust causing interstellar reddening is mainly distributed to the east and south of the nebula. The electron density is maximally 190 cm⁻³ and generally below 100 cm⁻³. Assuming a constant electron density of 100 cm⁻³, an electron temperature map ranges between 9,000 K and 14,000 K.
188

Étude de la composition chimique des naines M du voisinage solaire grâce à la spectroscopie infrarouge à haute résolution

Jahandar, Farbod 12 1900 (has links)
La spectroscopie est un aspect fondamental de l'astronomie observationnelle, offrant des contraintes sur la composition, la température, la densité, la masse et le mouvement des objets astronomiques. Cette thèse se concentre spécifiquement sur la spectroscopie des naines M, des étoiles petites et froides de la séquence principale, les plus nombreuses dans notre Galaxie. Malgré leur abondance, les naines M ont été moins étudiées que les étoiles plus brillantes en raison de leur faible luminosité et de leurs spectres complexes dominés par des bandes moléculaires. Cependant, leur importance en astrophysique est profonde, car elles sont cruciales pour comprendre les populations stellaires, l'évolution des galaxies et elles sont des cibles privilégiées dans la recherche et la caractérisation des exoplanètes, en particulier celles semblables à la Terre et potentiellement habitable. La pierre angulaire de notre méthodologie observationnelle est le SpectroPolarimètre InfraRouge (SPIRou), un instrument de pointe situé au Télescope Canada-France-Hawaï (CFHT). Ce spectropolarimètre proche infrarouge (PIR) est spécialisé pour des études lies à la détection et caractérisation d'exoplanètes et divers programmes d'astrophysique stellaire. La spectroscopie à haute résolution de SPIRou opère entre 0.98 et 2.35 microns, avec un pouvoir de résolution d'environ 70000, idéal pour étudier les étoiles relativement froides comme les naines M, qui émettent principalement dans le domaine spectral du proche infrarouge. Sa capacité à détecter des caractéristiques spectrales subtiles est cruciale pour déterminer avec précision les abondances élémentaires, la température effective et la vitesse radiale d'une étoile. De plus, bien que ce ne soit pas l'objectif principal de cette thèse, les capacités polarimétriques de SPIRou offrent des aperçus précieux sur les champs magnétiques des naines M. Notre analyse initiale s'est concentrée sur l'étoile de Barnard, une naine M bien étudiée dans le voisinage solaire. Nous avons comparé les spectres PIR haute résolution observés aux modèles d'atmosphère stellaire PHOENIX-ACES. Bien que ces modèles soient généralement en bon accord avec les observations, de nombreuses différences spectrales sont identifiées telles que le décalage du continuum, de la contamination non résolue de diverses raies de même que le décalage inattendu de raies spectrales de leur longueur d'onde nominale. Tous ces problèmes conspirent à biaiser les déterminations d'abondance et de température effective. Une partie importante de cette étude a impliqué l'identification d'une liste de raies spectrales fiables dans le spectre PIR pour l'analyse chimique. Nous avons développé un pipeline automatisé personnalisé qui prend en compte les incertitudes du modèle, adapté pour déterminer à la fois la température effective et les abondances chimiques basées sur un spectre PIR haute résolution. Pour l'étoile de Barnard, nous avons déterminé une température effective de 3231 +/- 21 K, en excellent accord avec la valeur de 3238 +/- 11 K déduite des méthodes interférométriques considérées comme les plus fiables. De plus, notre analyse a fourni des mesures d'abondance de 15 éléments, dont quatre (K, O, Y, Th) jamais signalés auparavant. Ces mesures sont en bon accord avec la littérature. S'appuyant sur notre étude initiale, nous avons étendu notre méthodologie à un échantillon de 31 naines M proches, dont une dizaine dans des systèmes binaires avec une étoile FGK comme primaire dont la métallicité est bien établie par la spectroscopie haute resolution dans le domaine visible. Cet échantillon permet d'investiguer l'applicabilité et les limites de nos techniques et de fournir une comparaison entre les mesures d'abondance déduites de la spectroscopie PIR et optique. Nous avons caractérisé les incertitudes de notre méthode Teff en la testant sur des modèles synthétiques avec divers niveaux de bruit et avons trouvé une incertitude constante de 10 K pour un rapport signal-bruit supérieur à ~100. La comparaison de nos mesures de température effective sont en excellent accord, à 30 K près, avec des valeurs interférométriques. Nous avons ensuite mesuré les abondances de jusqu'à 10 éléments différents pour ces étoiles, certaines ayant leurs premières compositions chimiques mesurées. Pour les systèmes binaires, nous avons trouvé des métallicités marginalement inférieures dans les naines M par rapport à leurs compagnons FGK dont la métallicité est dérive de la spectroscopie optique, avec des différences moyennes de 0,14 +/- 0,09 dex par rapport aux valeurs rapportées de Mann et al. (2013). On trouve donc un excellent accord entre les mesures d'abondances dérivées de la spectroscopie PIR haute résolution par notre méthode et celles dérivées de la spectroscopie haute résolution optique de leur compagnon FGK. Nos résultats ont contribué à l'analyse spectroscopique des naines M, élargissant le champ de l'analyse d'abondance chimique pour ces étoiles. Nous avons compilé une liste de raies fiables où les modèles PHOENIX montrent un bon accord avec les observations. Nos résultats soulignent la nécessité de modèles d'atmosphère améliorés pour mieux exploiter la puissance de la spectroscopie PIR pour une détermination précise de la température effective et des mesures d'abondance des naines M. / Spectroscopy is a foundational aspect of observational astronomy, providing critical insights into the composition, temperature, density, mass, and motion of astronomical objects. This thesis specifically focuses on the spectroscopy of M dwarfs, small and cool stars on the main sequence, which are the most numerous type of stars in our Galaxy. Despite their abundance, M dwarfs have been less studied than brighter stars due to their low luminosity and complex spectra dominated by molecular bands. However, their significance in astrophysics is profound, as they are crucial in understanding stellar populations, galaxy evolution, and are prime targets in the search and characterization of exoplanets, especially Earth-like ones potentially harboring life. The cornerstone of our observational methodology is the SpectroPolarimètre InfraRouge (SPIRou), a cutting-edge instrument housed at the Canada-France-Hawaii Telescope (CFHT). This near-infrared (NIR) spectropolarimeter excels in a range of scientific studies, from exoplanet detection to stellar physics. SPIRou’s high-resolution spectroscopy operates between 0.98 and 2.35 microns, with a resolving power of about 70000, ideal for analyzing cool stars like M dwarfs, which emit predominantly in the NIR spectrum. Its ability to detect subtle spectral features is crucial for accurately determining elemental abundances, effective temperature, and radial velocity of a star. For our research, the high-resolution NIR spectroscopy of SPIRou was essential, allowing us to capture detailed spectra of M dwarfs with high precision, thus forming the foundation of our analysis. Our initial analysis centered on Barnard's star, a well-studied M dwarf in the solar neighborhood. We compared the observed high-resolution NIR spectra to the PHOENIX-ACES stellar atmosphere models. While those models are generally in good agreement with observations, numerous spectral differences are identified such as continuum mismatch, unresolved contamination, and spectral line shifts, all conspiring to bias elemental abundance and effective temperature determinations. A crucial part of this study involved identifying reliable spectral lines in the NIR spectrum for chemical analysis. We developed a customized automated pipeline that takes model uncertainties into account to determine both the effective temperature and chemical abundances based on a high-resolution NIR spectrum. For Barnard's star, we determined an effective temperature of 3231 +/- 21 K, in excellent agreement with the value of 3238 +/- 11 K inferred from interferometric methods. Additionally, our analysis has provided abundance measurements of 15 elements including four (K, O, Y, Th) never reported before. Those measurements are in good agreement with the literature. Building upon our initial study, we extended our methodology to a sample of 31 nearby M dwarfs, including some in binary systems with a FGK star as primary. This sample allows to investigate the broader applicability and potential limitations of our techniques and provide a comparison between abundance measurements inferred from NIR and optical spectroscopy. We investigated the uncertainties of our Teff method by testing it on synthetic models with various level of noise and found a consistent uncertainty of 10 K for signal-to-noise ratio greater than ~100. Our Teff are in excellent agreement with those inferred from interferometric methods within typical dispersion of ~30 K, comparable to the apparent noise floor of our Teff estimates, showing the validity of our method. We then measured the abundances for up to 10 different elements for these stars, many of them being their first measured chemical compositions. For the binary systems, we find an excellent agreement between our metallicities of M dwarfs compared to their FGK counterparts derived from optical spectroscopy, with with mean differences of 0.14 +/- 0.09 dex against the reported values from Mann et al. (2013). Our findings have contributed to the spectroscopic analysis of M dwarfs, broadening the scope of chemical abundance analysis for these stars. We compiled a reliable line list where PHOENIX models show good agreement with observations. Our results emphasize the need for improved atmosphere models to fully exploit the power of NIR spectroscopy for precise determination of effective temperature and abundance measurements of M dwarfs.
189

Sur l’extraction de spectres en absorption de sources ponctuelles et étendues avec SpIOMM

Lavoie, Sébastien 20 April 2018 (has links)
Installé à l’Observatoire du Mont-Mégantic, le spectromètre imageur à transformée de Fourier SpIOMM possède un grand champ de vue de 12’X12’ et une haute efficacité qui le placent très favorablement parmi les autres instruments astronomiques à couverture intégrale de champ. Jusqu’à maintenant, l’instrument s’est limité à l’étude des raies en émission. Or, les processus en absorption sont aussi importants et leur étude peut bénéficier de l’efficacité de SpIOMM. On étudie les capacités de SpIOMM pour l’extraction de spectres en absorption. Ces dernières, plus sensibles au bruit, nécessitent un traitement supplémentaire. Des sources étendues et ponctuelles sont étudiées. On présente des spectres d’amas d’étoiles et de la galaxie elliptique M87. Leur analyse démontre les capacités de SpIOMM pour l’étude des raies en absorption des deux types de sources. Les résultats sont importants puisqu’un nouveau spectromètre imageur à transformée de Fourier, SITELLE, sera livré au télescope Canada-France-Hawaii en 2014. / Installed at the Mont-Mégantic Observatory, the imaging Fourier transform spectrometer SpIOMM possesses a large field of view and high throughput. This places it favourably when compared to other astronomical integral field spectrometers. Until now, the work done with the instrument has been limited to the study of emission lines. The physical processes behind absorption features are also important and their study can gain from an instrument like SpIOMM. We explore SpIOMM’s capabilities for the study of absorption line spectra. Absorption lines are more sensitive to noise than their emission counterpart. A different reduction process is used. Extended sources and point sources are studied. We present spectra from stars in clusters and the galaxy M87. The analysis shows SpIOMM’s capabilities for both types of sources. The results are important since a new imaging Fourier transform spectrometer, SITELLE, is to be delivered to the Canada-France-Hawaii telescope in 2014.
190

Reconstruction de la réponse impulsionnelle du système d'optique adaptative ADONIS à partir des mesures de son analyseur de surface d'onde et étude photométrique de la variabilité des étoiles YY Orionis

Harder, Stephan 17 May 1999 (has links) (PDF)
La résolution angulaire des observations à partir du sol est limitée par la turbulence atmosphérique qui déforme aléatoirement le front d'onde de la lumière d'un objet céleste. L'optique adaptative a été développée pour corriger cette déformation en temps réel. Cependant, cette correction n'est souvent que partielle, et une déconvolution de l'image s'impose dans le but d'effectuer une photométrie de bonne précision. La première partie de ce manuscrit est consacrée à l'estimation de la réponse impulsionnelle pour le système d'optique adaptative ADONIS du télescope de 3.6m de PUEO. La variabilité des conditions atmosphériques rend difficile sa calibration par l'observation d'une source quasi-ponctuelle. Pour cela, j'ai utilisé la méthode développée pour le système d'optique adaptative PUEO, qui estime la réponse impulsionnelle à partir des mesures de son senseur de courbure, et je l'ai adaptée au système ADONIS (basé sur un senseur de Shack-Hartmann). J'ai appliqué la méthode à des données obtenues dans différentes conditions atmosphériques et je discute ses limites. En particulier, le modèle ne peut pas reproduire une certaine aberration variable dont l'origine est probablement due à la présence d'une turbulence locale et non-stationnaire. Cette turbulence est clairement mise en évidence par le comportement spatial et temporel de la phase résiduelle. Dans la deuxième partie de cette thèse, je présente et discute les résultats d'une étude sur la variabilité photométrique des étoilesYY Orionis qui sont des étoiles jeunes montrant dans leurs spectres la signature de l'accrétion de matière. En particulier, une variabilité photométrique a pu être détectée pour l'étoile YY Ori. J'interprète cette variabilité par la présence d'une tache chaude relativement importante sur la surface de l'étoile, apparaissant et disparaissant périodiquement au cours de la rotation stellaire.

Page generated in 0.0526 seconds