Spelling suggestions: "subject:"algebras"" "subject:"álgebra""
31 |
Co-módulos primos e co-álgebras primasRodrigues, Virgínia Silva January 2004 (has links)
Seja C uma co-álgebra. Consideremos o anel de convolução C*, que é a álgebra dual de C. Dado um co-módulo à direita (resp. à esquerda) sobre C é possível definir um C*-módulo à esquerda (resp. à direita) racional. Nesta tese, estudamos as noções correspondentes dos conceitos de primos, fortemente primos, semiprimos e fortemente semiprimos, que são encontrados na literatura em [2], [3], [4], [13] e [17], para co-módulos. A noção do conceito de primo é obtida também para co-álgebras. Mostramos que uma co-álgebra C é prima se, e somente se, C é uma co-álgebra simples.
|
32 |
PI- Álgebras e Crescimento Polinomial das Codimensões / PI-Álgebras and Polynomial Growth of the CodimensionsGouveia, Tatiana Aparecida 03 December 2009 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2016-06-17T11:22:57Z
No. of bitstreams: 1
texto completo.pdf: 632950 bytes, checksum: 0e42e3a2e8ad45bdf6f51f0c40c56d37 (MD5) / Made available in DSpace on 2016-06-17T11:22:57Z (GMT). No. of bitstreams: 1
texto completo.pdf: 632950 bytes, checksum: 0e42e3a2e8ad45bdf6f51f0c40c56d37 (MD5)
Previous issue date: 2009-12-03 / Sejam F um corpo infinito e A uma F - ́algebra com identidades polinomiais, ou seja, uma PI- ́algebra. Dizemos que A tem crescimento polinomial (das codimensões) se a sequência de codimensões cn(A) ́e limitada polinomialmente, isto ́e, existem constantes a,t > 0 tais que cn(A) ≤ ant, para todo número natural n ≥ 1. Neste trabalho caracterizamos as PI- ́algebras de crescimento polinomial das codimensões. Provamos ainda que, para uma PI-álgebra associativa unitária A de crescimento polinomial, temos cn (A) = qnk + O(n k−1 ), onde q ́e um número racional, k um inteiro não negativo e 1/k ≤ q ≤ ∑ (−1) j⋅ Em particular, quando k ́e ́ımpar, inteiro n ̃ao negativo e k! j! j=0 verificamos que um melhor limite inferior do coeficiente dominante q ́e dado por k − 1 ⋅ Além disso, para qualquer grau fixo k, construímos PI- ́algebras associativas k! unitárias, cuja sequência das codimensões possui o maior e o menor crescimento polinomial possível de grau k e descrevemos explicitamente uma base para o T-ideal de tais álgebras. Por fim caracterizamos, a menos de PI-equivalência, as PI- ́algebras associativas unitárias de crescimento polinomial no máximo cúbico. / Let F be an infinite field and A an F -algebra with polynomial identities, that is, a PI-algebra. We say that A is of polynomial growth (of the codimensions) if the sequence of codimensions c n (A) is polynomially bounded, that is, there exist constants a, t > 0 such that c n (A) ≤ an t , for all natural numbers n ≥ 1. In this work we characterize the PI-algebras of polynomial growth of the codimensions. For an unitary associative PI-algebra A of polynomial growth, we prove even that c n (A) = qn k + O(n k−1 ), where q is a rational number, k a nonnegative integer and k (−1) j ∑ ≤ q ≤ ⋅ In particular, when k is odd, we show that a better lower k! j! j=0 k − 1 bound of the leading coefficient q is given by ⋅ Moreover, for any fixed degree k! k, we construct unitary associative PI-algebras whose codimension sequence has the largest and smallest possible polynomial growth of degree k and describe an explicit basis for the T-ideal of such algebras. Finally we characterize, up to PI-equivalence, the unitary associative PI-algebras of polynomial growth at most cubic. / Dissertação antiga
|
33 |
Co-módulos primos e co-álgebras primasRodrigues, Virgínia Silva January 2004 (has links)
Seja C uma co-álgebra. Consideremos o anel de convolução C*, que é a álgebra dual de C. Dado um co-módulo à direita (resp. à esquerda) sobre C é possível definir um C*-módulo à esquerda (resp. à direita) racional. Nesta tese, estudamos as noções correspondentes dos conceitos de primos, fortemente primos, semiprimos e fortemente semiprimos, que são encontrados na literatura em [2], [3], [4], [13] e [17], para co-módulos. A noção do conceito de primo é obtida também para co-álgebras. Mostramos que uma co-álgebra C é prima se, e somente se, C é uma co-álgebra simples.
|
34 |
Superficies en el grupo de HeisenbergFigueroa Serrudo, Christian Bernardo 25 September 2017 (has links)
Discutiremos la existencia de las superficies umbílicas en el grupo de Heisenberg usando la aplicación normal de Gauss.
|
35 |
Co-módulos primos e co-álgebras primasRodrigues, Virgínia Silva January 2004 (has links)
Seja C uma co-álgebra. Consideremos o anel de convolução C*, que é a álgebra dual de C. Dado um co-módulo à direita (resp. à esquerda) sobre C é possível definir um C*-módulo à esquerda (resp. à direita) racional. Nesta tese, estudamos as noções correspondentes dos conceitos de primos, fortemente primos, semiprimos e fortemente semiprimos, que são encontrados na literatura em [2], [3], [4], [13] e [17], para co-módulos. A noção do conceito de primo é obtida também para co-álgebras. Mostramos que uma co-álgebra C é prima se, e somente se, C é uma co-álgebra simples.
|
36 |
Algebras geradas por menores de matrizes cataleticasMachado, Paulo Antonio Fonseca 18 March 1997 (has links)
Orintadores: Aron Simis, Paulo Roberto Brumatti / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-22T01:40:02Z (GMT). No. of bitstreams: 1
Machado_PauloAntonioFonseca_D.pdf: 3103261 bytes, checksum: 806ab8cc1b64f2bbad4afc9600943153 (MD5)
Previous issue date: 1997 / Resumo: Neste trabalho estabelecemos o conceito de matriz r-catalética e estudamos algumas álgebras relacionadas com menores máximos destas matrizes sobre um corpo. Seja X = (Xj+(i-1)r)ij uma m x n-matriz r-catalética, com m ? n, 1 ? i ? m, 1 ? j ? m e l ? r ? n, e seja K um corpo. Seja M o conjunto dos menores máximos de X. Considere-se em K[X] a ordem lexicográfica graduada <? determinada pela ordem total nas variáveis Xk > X1 se k < l. Seja in?(M) o conjunto dos monômios iniciais dos elementos de M e tome-se A = K[in?(M)]. Se I é o ideal gerado por in?(M) em K[X], seja n(I) S:! K[X, in?(M)t] a álgebra de Rees associada. Desenvolvemos então uma teoria análoga á teoria de tableaux standard para matrizes genéricas . em relação às matrizes cataléticas, o que chamamos de tableaux r-standard. Esta teoria dos tableaux para matrizes r-cataléticas apresenta muitos pontos em comum com a teoria das álgebras de Hodge, indicando que podem existir por trás estruturas algébricas interessantes. Com isto conseguimos construir representações adequadas para A e para n(I) que permitem aplicar a teoria de complexos simpliciais e anéis de Stanley-Reisner. Usando estas técnicas calculamos o a-invariante e o grau do h-vetor de A. Como A e n(I) são anéis de semigrupos, podemos também demonstrar que estas álgebras são álgebras normais de Cohen-Macaulay usando critérios de semigrupos. afins. Usando técnicas de corpos de frações e alguns resultados sobre grafos, calculamos a dimensão de A.....Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital. / Abstract: Not informed / Doutorado / Doutor em Matemática
|
37 |
Ideais diferenciais em álgebras finitamente geradas / Differential ideals in finitely generated algebrasLuan Benzi Medeiros 18 May 2018 (has links)
O objetivo principal dessa dissertação é o estudo do comportamento de ideais diferenciais com respeito à importantes temas de álgebra comutativa como decomposição primária e localização. Veremos que dado um ideal diferencial em um anel noetheriano de característica zero, seus primos associados também serão diferenciais e que ele admite uma decomposição primária cujas componentes são diferenciais. Em relação a localização, teremos uma equivalência dos conceitos de ideais diferenciais no anel dado e no localizado, ou seja, um ideal é diferencial se, e somente se, sua localização também o é. / The main goal of this dissertation is to study the behavior of differential ideals regarding important themes of commutative algebra such as primary decomposition and localization. We will see that, given a differential ideal in a noetherian ring of caracteristic zero, its associated primes ideals will also be differentials and we will exhibit a primary decomposition whose components will be differentials too. In relation to localization, we will have an equivalence of the concepts of differential ideals in the given ring and in the localized ring, that is, an ideal is differential if, and only if, its localization is differential too.
|
38 |
Desenvolvimento em teoria de representaçãoes de grupos quanticosMoura, Adriano Adrega de, 1975- 03 August 2018 (has links)
Orientadores:Alcibiades Rigas e Pavel I. Etingof / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T14:05:29Z (GMT). No. of bitstreams: 1
Moura_AdrianoAdregade_D.pdf: 703067 bytes, checksum: d855f6d5b3cf742836b17cd716f46a33 (MD5)
Previous issue date: 2003 / Doutorado / Doutor em Matemática
|
39 |
Un estudio algebraico y topológico en variedades de álgebras de De Morgan con operadoresFigallo Orellano, Aldo 11 December 2014 (has links)
El volumen que aquí presentamos esta organizado en 6 capítulos. En el primero se
describen resultados conocidos que facilitar´an la lectura de la tesis, el mismo no tiene
pretenciones de originalidad.
El Capítulo II está organizado en siete secciones. Comenzamos señalando las motivaciones
para el estudio de operadores simétricos en las álgebras de De Morgan pseudocomplementadas
modales, a las que denominamos S-álgebras. Posteriormente, determinamos
las álgebras generadoras de esta variedad y mostramos que es semisimple. A continuación,
estudiamos las álgebras finitas y finitamente generadas lo que nos permitió afirmar que
es una variedad localmente finita. También determinamos la estructura de las S-álgebras
libres con n, (n < !) generadores libres y exhibimos el número de elementos de la misma
en función del número de generadores. Completamos el capítulo determinando las condiciones
necesarias y suficientes para la existencia de epimorfismos entre S-álgebras finitas.
Para ello, debimos realizar un estudio minucioso del espectro primo de las S-álgebras,
en particular, probamos que el mismo se puede descomponer como una suma cardinal
especial. A partir de estos resultados contabilizamos el número de epimorfimos que es
posible definir entre álgebras finitas y mostramos dicho número en casos particulares como
las mpM-álgebras, las álgebras de Lukasiewicz-Moisil de orden 3 y las álgebras de Boole.
Finalizamos el capítulo describiendo el retículo de las subvariedades de la variedad de las
S-álgebras.
En el Capítulo III, introducimos y estudiamos las mpM-´algebras enriquecidas con un
automorfismo de periodo k, donde k 2 IN, k 2 a las que llamamos Ck-álgebras. Los resultados
de este capítulo son la generalización natural de los obtenidos en el capítulo anterior
para de las S-álgebras, que son el caso k = 2. Comenzamos presentando las propiedades
m´as importantes de esta nueva estructura. Posteriormente, establecemos una correspondencia
entre conguencias y c-filtros, (i.e.: ciertos filtros especiales del álgebra) lo que
permite determinar la familia de ultrafiltros asociada a cada c-filtro maxinal. Por otra
parte, determinamos las condiciones necesarias y suficientes para que una congruencia
sea maximal, lo que fue posible considerando una nueva operaci´on binaria, la implicación
cíclica, y caracterizando a las congruencias por medio de los sistemas deductivos asociados
a está implicación. Además, las propiedades que verifica esta implicación nos permitió
mostrar que la variedad de las Ck-álgebras es semisimple. Por otra parte, estudiando el
espectro primo de una Ck-álgebra y utilizando técnicas diferentes al caso k = 2, ya que la
estructura de las Ck-álgebras es mucho más complejo que de las S-álgebras, determinamos
las álgebras generadoras de la variedad. También, mostramos que la variedad es finitamente
generada y localmente finita. Por último, determinamos el cardinal de la Ck-álgebra
libre con un conjunto de n (n < !) generadores libres en funci´on de los parámetros k y n
y verificamos este resultado para los casos k = 1 y k = 2 mostrando que ellos coninciden
con los ya obtenidos en [61] y en el Capítulo II de esta tesis, respectivamente.
En el Capítulo IV, definimos las mpM-álgebras monádicas (o M-álgebras). A cada
álgebra de esta nueva clase ecuacional, la tratamos como un par formado por una mpM-
álgebra y un cuantificador existencial. En primer lugar, exhibimos propiedades y mostramos
la relación existente entre estas álgebras y otras estructuras conocidas. Además, a partir
de una familia especial de sub´algebras de una mpM-álgebra determinamos como obtener
todos los cuantificadores que la transforman en unaM-álgebra. A continuación, iniciamos
un estudio topológico de las mismas, asociando a cada M-álgebra un espacio compacto,
Hausdorff y totalmente disconexo en el orden, enriquecido con una relación de equivalencia,
al estilo de las dualidades de Halmos-Priestley. Esta primera representación nos
permitió realizar un estudio exhaustivo de las congruencias. En particular, mostramos
que existe un isomorfismo entre el retículo de ciertos subconjuntos abiertos, cerrados e
involutivos del espacio asociado a una M-álgebra y el retículo de las M−congruencias
principales de la misma. Además, probamos que las congruencias principales y booleanas
coinciden y en el caso finito determinamos su cardinal. Luego, mostramos que las congruencias
principales quedan también determinadas por ciertos filtros especiales del álgebra,
completando el estudio de las mismas. Finalmente, terminamos el capíıtulo señalando
que, a diferencia de lo que ocurre en otras clases de álgebras, aquí, no siempre, es posible
definir la estructura monádica partir de la k-cíclica.
En el Capítulo V, continuamos el estudio de las M-álgebras y presentamos una segunda
representación topológica la que nos permitió determinar las álgebras generadoras
(finitas o infinitas) de la variedad. Primeramente, profundizamos el estudio del espectro
primo de lasM-álgebras, lo que nos permitió obtener una nueva representación topológica
para estas álgebras considerando la categoría de los sm-espacios y las sm-funciones. Dicha
dualidad cuenta con la ventaja de brindar más información que la primera, sobre el efecto
de la relación de equivalencia en el espacio. Por otro lado, probamos que las condiciones
que se le piden a los q-espacios (ver [9]) resultan adecuadas para que el espacio cociente
sea un espacio de Priestley con la topología de identificación y que la proyección canónica
sea una función continua que preserva el orden. Además, mostramos que este resultado
se tralada a las espacios de De Morgan monádicos ([62, p.84]) y a los sm-espacios, lo
que es fundamental para el estudio subsiguiente. Por otra parte, utilizamos conceptos de
topología general tales como convergencia y acomulación de redes (suceciones de Moore-
Smith) y el teorema de extensión de funciones continuas para espacios T3, entre otros,
para determinar las M-álgebras generadoras de cardinalidad arbitraria. Finalmente, teniendo
en cuenta algunos de los resultados precedentes, analizamos la relación entre las
álgebras de De Morgan monádicas ([62]) y las álgebras tetravalentes modales monádicas
([74]). En particular, probamos que toda álgebra tetravalente modal equipada con un
cuantificador especial es álgebras de De Morgan monádicas una simple. Luego, estamos
en condiciones de decir que el retículo de las subvariedades de álgebras de De Morgan
monádicas es mucho más complejo que el retículo de las subvariedades de los Q-retículos
distributivos acotados introducidos por Cignoli en [9].
Finalmente, en el Capítulo VI introducimos las MV -álgebras con dos cuantificadores
que conmutan las cuales, como ya dijimos, son una generalización natural de las álgebras
cilíndricas de dimensión dos libre de elementos diagonales. El tramtamiento de estas
álgebras esta dado en términos de implicación y negación. Este hecho nos permite simplificar
los resultados establecidos por Di Nola y Grigolia [18] en cuanto a la caracterización de los cuantificadores por medio de subálgebras relativamente completas especiales.
Además, probamos que esta nueva variedad tiene la propiedad de extensión de congruencias
y que es a congruencias distributivas. Por otra parte, desarollamos una dualidad
topológica para estas álgebras y como aplicación de la misma, caracterizamos a las congruencias
por medio de ciertos subconjuntos cerrados del espacio asociado a un álgebra.
Además, estudiamos la variedad generada por cadenas de longitud n + 1 (n < !)y, entre
otras resultados, probamos que se trata de una subvariedad semisimple y caracterizamos
sus miembros subdirectamente irreducibles. Finalmente, a partir de un álgebra funcional
especial determinamos un conjunto importante de las álgebras simples y exhibimos la
totalidad de ellas en el caso finito. / This volume is organized in six chapters. In Chapter I all the results presented are
well-known, but they were included either to facilitate the reading or to fix the notations
needed throughout the remainder chapters and it has no pretensions of originality.
Chapter II is organized in seven sections. We start pointing out the motivations for
the study of symmetric operators in modal pseudocomplemented De Morgan algebras,
which we called S-algebras. Subsequently, we determine the generating algebras of this
variety and we show that it is semisimple. Furthermore, we study the finite and the
finitely generated S-algebras which allows us to assert that this variety is locally finite.
We also determine the structure of the free S-algebras with n (n < !) free generators
and we exhibit a formula to calculate the cardinal number of these algebras in terms
of the number of its free generators. On the other hand, we establish necessary and
sufficient conditions for the existence of epimorphisms between finite S-algebras. To do
this, we make a thorough study of the prime spectrum of the S-algebras. In particular,
we prove that it can be decomposed as a special cardinal sum. From these results we
compute the number of epimorphims which can be defined between finite algebras. In
addition, we show that number in the particular cases of mpM-algebras, Lukasiewicz-
Moisil algebras of order 3 and Boolean algebras. We conclude the chapter describing the
lattice of subvarieties of the variety of the S–algebras.
In Chapter III, we introduce and study the mpM-algebras enriched with an automorphism
of period k, where k 2 IN, k 2. We called them Ck-algebras. The results of
this chapter are a natural generalization of those obtained in the previous chapter for S-
algebras, because they are Ck-algebras when k = 2. First, we present the most important
properties of this new structure. Then, we establish a correspondence between the family
of congruences and the family of c-filters (ie: certain special filters of the algebra) which
allows us to determine a family of ultrafilters associated with each maxinal c-filter. Moreover,
we determine necessary and sufficient conditions for a congruence to be a maximal
one. This result follows by considering a new binary operation called cyclical implication
and characterizing the congruences by means of the deductive systems associated with
this implication. In addition, the properties verified by this implication allow us to show
that the variety of Ck-algebras is semisimple. On the other hand, we determine the algebras
which generate this variety by applying different techniques of the ones used when
k = 2 because the structure of Ck-algebras is much more complex than the S-algebras.
Besides, we prove that the variety of Ck-algebras is finitely generated and locally finite.
Finally, we obtain the cardinal number of the free Ck-algebra with a set of n (n < !) free
generators in terms of the parameters k and n and we also verify this result for the case
k = 1 and k = 2, showing that they coincide with those already obtained in [61] and in
Chapter II of this thesis, respectively.
Chapter IV is devoted to monadic mpM-algebras (or M-algebras). Each algebra of
this new variety is considered as a pair consisting of an mpM-algebra and an existential
quantifier. First, we obtain some properties and show the relationship between these
algebras and others well-known structures. Moreover, from a special family of subalgebras
of an mpM-algebra we determine how to get all the quantifiers that transform it into an
M-algebra. Next, we started a topological study of this variety associating to each M-
algebra a compact, Hausdorff and totally order-disconnected topological space enriched
with an equivalence relation, such as the Halmos-Priestley’s dualities. This first duality
allowed us to do an extensive study of the congruences. In particular, we show that there
is an isomorphism between the lattice of certain open, closed and involutive subsets of
the associated space of an M-algebra and the lattice of the principal M-congruences of
it. Furthermore, we prove that the principal and Boolean congruences coincide and we
calculate the number of them in the case of finite algebras. Besides, we show that the
principal congruences are also determined by certain special filters of the algebra. Thus
the study of the congruences is completed. Finally, we ended the chapter by noting that,
unlike what happens in other classes of algebras, here it is not always possible to define
the monadic structure from the k-cycle one.
In Chapter V, we continue the study of the M-algebras and we present a second
topological representation which allowed us to determine the generating algebras (finite
or infinite) of this variety. First, we go in depth in the study of the prime spectrum of
the M-algebras, in order to obtain a new topological representation for these algebras
considering the category of the sm-spaces and the sm-functions. This duality has the
advantage of providing more information than the first on the effect of the equivalence
relation in the space. On the other hand, we prove that the conditions that verify the
q-spaces (see [9]) are suitable for the quotient space to be a Priestley space with the
identification topology, and for the canonical projection to be a continuous function that
preserves the order. Moreover, we show that this result is transferred to the monadic De
Morgan spaces ([62, p.84]) and to the sm-spaces, which is fundamental for subsequent
study. Furthermore, we use among others, general topological concepts as the convergence
and accumulation for nets (Moore-Smith sequences) and the extension theorem for the
continuous functions in T3-spaces, in order to determine the M-algebras of an arbitrary
cardinality which generates this variety. Finally, taking into account some of the previous
results, we analyzed the relationship between monadic De Morgan algebras ([62]) and
monadic tetravalent modal algebras ([74]). In particular, we prove that all tetravalent
modal algebra with a special quantifier is a simple monadic De Morgan algebra. Hence,
we can assert that the lattice of the subvarieties of monadic De Morgan algebras is much
more complex than the lattice of the subvarieties of Q-distributive lattices introduced by
Cignoli in [9].
Finally, in Chapter VI we introduce the MV -algebras with two quantifiers which commute.
These algebras are a natural generalization of cylindric algebras of dimension two
free of diagonal elements. The study of them is done in terms of implication and negation.
This fact allows us to simplify the results established by Di Nola and Grigolia ([18]) with
respect to the characterization of quantifiers by means of special relatively complete subalgebras.
Besides, we prove that this new variety has the congruence extension property
and distributive congruences. Furthermore, we develop a topological duality for these
algebras which allows us to characterize the congruences by means of certain closed subsets
of the space associated with them. In addition, we study the variety generated by
chains of length n + 1 (n < !) and, among other results, we prove that it is a semisimple
subvariety and we characterize their subdirectely irreducible members. Finally, from a
special functional algebra we determine an important set of simple algebras and we show
all of them in the finite case.
|
40 |
Teoría de la representación para las álgebras de Hilbert y para las álgebras de Hilbert con operadores modalesMontangie, Lidia Daniela 23 October 2015 (has links)
Esta tesis tiene dos objetivos fundamentales. El primer objetivo es presentar y desa-
rrollar una representación y dualidad topológica para variedades de álgebras que corres-
ponden a los reductos {→} y {→, ∨} de la variedad de las álgebras de Heyting. Estas
representaciones están basadas en un clase particular de espacios topológicos conocidos
como espacios sober. Es un hecho bien conocido que toda álgebra de Heyting es repre-
sentable como subálgebra del álgebra de Heyting de todos los subconjuntos crecientes
de un conjunto ordenado. También es sabido que un álgebra de Heyting es representa-
ble como una subálgebra del conjunto de todos los abiertos de un espacio topológico T0.
Estas representaciones tienen muchas aplicaciones tanto en el estudio algebraico de es-
tas estructuras como en las aplicaciones de la l ógica intuicionista Int y algunas de sus
extensiones. Además, estas representaciones son la base para las conocidas dualidades
topológicas de Priestley y de Stone para las álgebras de Heyting. Cuando miramos algún
subreducto de las álgebras de Heyting, como por ejemplo, en las álgebras que correspon-
den al fragmento implicativo, conocidas como álgebras de Hilbert, la teoría de represen-
tación y dualidad desarrollada para las álgebras de Heyting no es directamente aplicable a
estos fragmentos. El primer resultado que conocemos sobre representación de un álgebra
de Hilbert se encuentra en la tesis de A. Diego [29]. En dicha tesis aparece un teorema
de representación tipo Stone, pero este resultado no tuvo un impacto muy significativo
ya que es insuficiente para desarrollar una dualidad categórica. El primer objetivo de esta
tesis es, justamente, presentar una dualidad topológica completa para las álgebras de Hil-
bert y extender esta dualidad a la variedad de las álgebras de Hilbert con supremo. Estos
resultados están basados en los espacios topológicos conocidos como espacios sober y
extienden a los dados por M. Stone [67]. Primero probamos que la categor´ıa formada por
álgebras de Hilbert con semi-homomorfismos como morfismos es dualmente equivalente
a la categoría de espacios de Hilbert con ciertas relaciones binarias. También obtenemos
una dualidad para las álgebras de Hilbert con homomorfismos. Aplicamos estos resulta-
dos para demostrar que el retículo de sistemas deductivos de un álgebra de Hilbert y el
ret´ıculo de subconjuntos abiertos de su espacio de Hilbert dual, son isomorfos. Explo-
ramos cómo esta dualidad está relacionada con la dada en [18] para álgebras de Hilbert
finitas, y con la dualidad topológica desarrollada en [19] para álgebras de Tarski. Todos
estos resultados son presentados en el Capítulo 3.
La otra variedad asociada a un fragmento de la lógica Int que estudiamos es la va-
riedad de las álgebras de Hilbert con supremo, i.e., álgebras de Hilbert donde el orden
asociado es un supremo-semiret´ıculo. Extendemos la dualidad encontrada para las álge-
bras de Hilbert al caso de las álgebras de Hilbert con supremo. Probamos que el conjunto
ordenado de todos los ideales de un álgebra de Hilbert con supremo tiene estructura de
retículo. Demostramos que en este retículo es posible definir una implicación, pero la
estructura resultante no es un álgebra de Heyting ni tampoco es un semiretículo implica-
tivo. Damos una descripción dual para el retículo de ideales de un álgebra de Hilbert con
supremo. Estos resultados son presentados en el Capítulo 5.
El segundo objetivo fundamental de esta memoria está centrado en estudiar algunas
extensiones modales de las álgebras de Hilbert y de las álgebras de Hilbert con supre-
mo. Estas extensiones corresponden a fragmentos de algunas extensiones modales de la
l ógica intuicionista Int. En esta memoria nos hemos centrado únicamente en dos frag-
mentos. Primero introducimos la variedad de álgebras de Hilbert con un operador mo-
dal , llamadas H -álgebras. La variedad de H -álgebras es la contraparte algebraica
del {→, }-fragmento de la lógica modal intuicionista IntK , al cual denotamos con
IntK→. Estudiamos la teoría de representación y damos una dualidad topológica para la
variedad de H -álgebras. Aplicamos estos resultados para probar que la l ógica modal
implicativa IntK→ es canónica y por lo tanto es completa. Determinamos las álgebras
simples y subdirectamente irreducibles en algunas subvariedades de H -álgebras. Tam-
bien estudiamos una interesante variedad de álgebras, llamadas álgebras de Hilbert Lax.
Todos estos resultados son presentados en el Caíıtulo 4.
El otro fragmento que investigamos es el fragmento {→, ∨, ♦} de la lógica modal in-
tuicionista IntK♦. Introducimos y estudiamos la variedad de H∨ ♦ -álgebras, las cuales son
álgebras de Hilbert con supremo enriquecidas con un operador modal ♦. Damos una re-
presentación topológica para estas álgebras usando la representación topológica obtenida
para las álgebras de Hilbert con supremo. Consideramos algunas subvariedades particula-
res de H∨ ♦ -álgebras. Estas variedades son la contraparte algebraica de algunas extensiones
del fragmento implicativo de la l ógica modal intuicionista IntK♦. Usamos la representa-
ción topológica obtenida para lasH∨ ♦ -álgebras para probar que la l ógica modal implicativa
IntK→ ♦ es canónica, y en consecuencia la lógica IntK→ ♦ es completa. Tambi´en determi-
namos las congruencias de las H∨ ♦ -álgebras en términos de ciertos subconjuntos cerrados
del espacio asociado, y en términos de una clase particular de sistemas deductivos. Es-
tos resultados nos permitieron caracterizar las H∨ ♦ -álgebras simples y subdirectamente
irreducibles. Estos resultados son presentados en el Capítulo 6. / This thesis has two main objectives. The first objective is to present and develop a
representation and a topological duality for some varieties of algebras corresponding to
the reducts {→} and {→, ∨} of the variety of Heyting algebras. These representations
are based on a particular class of topological spaces known as sober spaces. It is well-
known that every Heyting algebra is representable as a subalgebra of Heyting algebra of
all increasing subsets of a poset. Also, a Heyting algebra is representable as a subalgebra
of the set of all open subsets of a topological space T0. These representations have many
applications the algebraic study of these structures and applications of intuitionistic lo-
gic Int and some of its extensions. Moreover, these representations are the basis for the
known topological dualities of Priestley and Stone for Heyting algebras. When we look at
some subreduct of Heyting algebras, for example, algebras corresponding to the implica-
tive fragment, known as Hilbert algebras, representation theory and duality developed for
Heyting algebras is not directly applicable to these fragments. The first result we know
about representation of a Hilbert algebra is the thesis of A. Diego [29]. In this thesis a
theorem of Stone representation type appears, but this result did not have a significant
impact because this theorem is insufficient to develop a categorical duality. The first ob-
jective of this thesis is precisely present a complete topological duality for Hilbert algebras
and extend this duality to the variety of Hilbert algebras with supremum. These results are
based on topological spaces known as sober spaces and extend those given by M. Stone
[67]. First we prove that the category of Hilbert algebras with semi-homomorphisms is
dually equivalent to the category of Hilbert spaces with certain relations.We also obtained
a duality for Hilbert algebras with homomorphisms. We apply these results to prove that
the lattice of the deductive systems of a Hilbert algebra and the lattice of open subsets of
its dual Hilbert space, are isomorphic.We explore how this duality is related to the duality
given in [18] for finite Hilbert algebras, and with the topological duality developed in [19]
for Tarski algebras. All these results are presented in Chapter 3.
The other variety associated to a fragment of the logic Int that we study is the variety
of Hilbert algebras with supremum, i.e., Hilbert algebras where the associated order is a
join-semilattice. We extend the duality for Hilbert algebras to the case of Hilbert algebras
with supremum. We prove that the ordered set of all ideals of a Hilbert algebra with
supremum has a lattice structure. We also see that in this lattice it is possible to define
an implication, but the resulting structure is neither a Heyting algebra nor an implicative
semilattice. We give a dual description of the lattice of ideals of a Hilbert algebra with
supremum. These results are presented in Chapter 5.
The second main objective of this memory is centered on studying some modal exten-
sions of Hilbert algebras and Hilbert algebras with supremum. These extensions corres-
pond to fragments of some modal extensions of intuitionistic logic Int. In this memory
we have focused on only two fragments. First we introduce the variety of Hilbert algebras
with a modal operator , called H -algebras. The variety of H -algebras is the alge-
braic counterpart of the {→, }-fragment of the intuitionitic modal logic IntK , which
we denoted by IntK→ . We study the theory of representation and we give a topological
duality for the variety of H -algebras. We use these results to prove that the basic impli-
cative modal logic IntK→ is canonical and therefore is complete. We also determine the
simple and subdirectly irreducible algebras in some subvarieties of H -algebras. These
results are presented in Chapter 4.
The other fragment investigated is the fragment {→, ∨, ♦} of intuitionistic modal lo-
gic IntK♦.We introduce and study the variety ofH∨ ♦ -algebras, which are Hilbert algebras
with supremum endowed with a modal operator ♦. We give a topological representation
for these algebras using the topological spectral-like representation for Hilbert algebras
with supremum given in [22].We consider some particular varieties of H∨ ♦ -algebras. The-
se varieties are the algebraic counterpart of extensions of the implicative fragment of the
intuitionistic modal logic IntK♦. We use the topological representation for H∨ ♦ -algebras
to prove that the implicative modal logic IntK→ ♦ is canonical, and consequently the logic
IntK→ ♦ is complete. We also determine the congruences of H∨ ♦ -algebras in terms of cer-
tain closed subsets of the associated space, and in terms of a particular class of deductive
systems. These results enable us to characterize the simple and subdirectly irreducible
H∨ ♦ -algebras. These results are presented in Chapter 6.
|
Page generated in 0.3677 seconds