Spelling suggestions: "subject:"électrostrictifs"" "subject:"électrostriction""
1 |
High strain electrostrictive polymers : elaboration methods and modelizationKanda, Masae, Kanda, Masae 29 November 2011 (has links) (PDF)
La thèse porte de manière générale sur les polymères électrostrictifs qui peuvent être utilisés soit comme actionneurs électromécaniques souples, soit comme capteurs ou récupérateurs d'énergie. Le premier chapitre est une introduction générale aux systèmes couplés électromécaniques. Le choix des matériaux est exposé et porte sur les élastomères diélectriques et les polyuréthanes (PU) chargés par des nanoparticules conductrices de noir de carbone (CB). Le second chapitre porte sur la réalisation des films. Des particules de CB sous forme de micelles préformées et une technique " solution-cast " sont employées dans cette optique. Ce procédé permet une bonne dispersion des charges. Une amélioration de la déformation d'un facteur 1,6 est obtenue par introduction de particules de CB à 0.89 vol%. Le troisième chapitre présente la modélisation de phénomènes comme la saturation de la polarisation qui implique directement une saturation de la déformation. En modélisant la polarisation comme une fonction non-linéaire dépendant de deux variables (la permittivité bas niveau et un champ de saturation), on décrit ainsi correctement plusieurs phénomènes qui ne peuvent être interprétés par une approche linéaire et homogène. Les simulations effectuées montrent une bonne corrélation avec les expérimentations menées. Le quatrième chapitre propose une comparaison entre les films PU purs et chargés. Cette analyse porte non seulement sur des mesures mécaniques et électriques mais également en XRD ou en DSC afin de détecter le niveau de cristallisation. Une dispersion importante a ainsi été observée visuellement. Des déformations de l'ordre de 50 % ont ainsi été obtenues. Le cinquième chapitre porte sur l'effet lié à l'injection de charges électriques par bombardement électronique (HEBI), sur la déformation électrostrictive. Une telle approche permet ainsi un gain d'un facteur de l'ordre de 2 sur la déformation et semble réduire les pertes de façon très conséquente.
|
2 |
High strain electrostrictive polymers : elaboration methods and modelization / Polymères électrostrictifs à forte déformation : méthode d'élaboration et modélisationKanda, Masae 29 November 2011 (has links)
La thèse porte de manière générale sur les polymères électrostrictifs qui peuvent être utilisés soit comme actionneurs électromécaniques souples, soit comme capteurs ou récupérateurs d’énergie. Le premier chapitre est une introduction générale aux systèmes couplés électromécaniques. Le choix des matériaux est exposé et porte sur les élastomères diélectriques et les polyuréthanes (PU) chargés par des nanoparticules conductrices de noir de carbone (CB). Le second chapitre porte sur la réalisation des films. Des particules de CB sous forme de micelles préformées et une technique « solution-cast » sont employées dans cette optique. Ce procédé permet une bonne dispersion des charges. Une amélioration de la déformation d’un facteur 1,6 est obtenue par introduction de particules de CB à 0.89 vol%. Le troisième chapitre présente la modélisation de phénomènes comme la saturation de la polarisation qui implique directement une saturation de la déformation. En modélisant la polarisation comme une fonction non-linéaire dépendant de deux variables (la permittivité bas niveau et un champ de saturation), on décrit ainsi correctement plusieurs phénomènes qui ne peuvent être interprétés par une approche linéaire et homogène. Les simulations effectuées montrent une bonne corrélation avec les expérimentations menées. Le quatrième chapitre propose une comparaison entre les films PU purs et chargés. Cette analyse porte non seulement sur des mesures mécaniques et électriques mais également en XRD ou en DSC afin de détecter le niveau de cristallisation. Une dispersion importante a ainsi été observée visuellement. Des déformations de l’ordre de 50 % ont ainsi été obtenues. Le cinquième chapitre porte sur l’effet lié à l’injection de charges électriques par bombardement électronique (HEBI), sur la déformation électrostrictive. Une telle approche permet ainsi un gain d’un facteur de l’ordre de 2 sur la déformation et semble réduire les pertes de façon très conséquente. / In a general manner, the present thesis focuses on electrostrictive polymers which can be used either as flexible electromechanical actuators or as sensors or energy harvesters. Chapter 1 is a general introduction to electro-mechanical coupled systems. The choice of the materials is described and focuses on dielectric elastomers, polyurethane (PU) with conductive carbon black (CB) nano-particle fillers. Chapter 2 focuses on the film synthesis. CB nano-particles in the form of micelles and solution cast method were employed to provide good filler dispersion. The strain enhancement of a factor of 1.6 was obtained by 0.89 vol% CB doping. Chapter 3 exposes the modeling of electrostrictive actuation and in particular the saturation of the polarization. By modeling the polarization as a nonlinear function depending on two variables (low-level permittivity and saturation field), it is therefore possible to describe several phenomena that cannot be explained by a classical linear and homogeneous approach. Simulations performed using such an approach show a good agreement with experimental results. Chapter 4 presents the comparison between pure PU and composite films. It includes mechanical/electrical characterization as well as XRD or DSC measurements to detect the crystallization level. High dispersion level was visually confirmed. Strains of the order of 50 % were reached. Chapter 5 deals with the effect of electric charge injection by homogeneous electron beam irradiation (HEBI) on the electrostrictive strain. This technique therefore permits a gain of 2 on the obtained strain and seems to significantly reduce the losses in the material as well.
|
3 |
Couplage multiphysique à l’aide d’électret application à la récupération d’énergie / Multiphysics coupling with electret application to the Harvesting energyBelhora, Fouad 07 December 2013 (has links)
Les matériaux actifs, tels que les matériaux piézoélectriques et électrostrictifs, sont couramment utilisés dans la conception de dispositifs exploitant leurs propriétés respectives. La propriété principale de ces matériaux réside dans le fort couplage entre les comportements électrique et mécanique (piézoélectricité). Dans la majorité des cas, ces matériaux sont utilisés séparément. L’utilisation combinée de ces matériaux permet la réalisation de dispositifs innovants basés sur l’effet électrostrictifs: l’apparition d’une polarisation électrique induite par une contrainte mécanique et réciproquement l’apparition d’une déformation mécanique sous l’action d’un champ électrique. Les applications « support » concernent les capteurs et les actionneurs. L’étude de ce couplage passe par la caractérisation de ces matériaux, puis par la mise en place de modèles décrivant finement leurs comportements et enfin par le développement d’outils pour la conception. L’objectif de la thèse est de remplacer le matériau céramique, rigide et à faible déformation, par un film polymère nanocomposite électroactifs, présentant des grandes déformations et forces d'actionnement sous champ électrique modéré grâce à l'incorporation dans la matrice polymère de micro et nano-objets (charge) conducteurs ou semi-conducteurs. De plus, pour des applications plus spécifiques de la récupération d’énergie, la charge du film polymère par des micro et nano-objets conducteurs sera également étudiée. Idéalement, il serait très intéressant de réaliser un matériau multifonctionnel, sensible à la fois à une stimulation mécanique (propriétés de détection et/ou de récupération d’énergie par couplage électromécanique). / In the last decades, direct energy conversion devices for medium and low grades waste heat have received significant attention due to the necessity to develop more energy efficient engineering systems. A great deal of research has in recent years been carried out on harvesting energy using piezoelectric, electrostatic, electromagnetic , and thermoelectric ,transduction, with the aim of harvesting enough energy to enable data transmission. For this purpose, piezoelectric elements have been extensively used in the past; however they present high rigidity and limited mechanical strain abilities as well as delicate manufacturing process for complex shapes, making them unsuitable in many applications. Thus, recent trends in both industrial and research fields have focused on electrostrictive polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, flexibility, and processability. Hence, electrostrictive polymer films are much more suitable for energy harvesting devices requiring high flexibilities, such as systems in smart textiles and mobile or autonomous devices. Electrostrictive polymers can also be obtained in many different shapes and over large surfaces. . In the last years, electrostrictive polymers have been investigated as electroactive materials for energy harvesting. However for scavenging energy a static field is necessary, since this material is isotope, there is no permanent polarization compare to piezoelectric material. A solution for avoid this problem; concern the hybridization of electrostrictive polymer with electret. Finally, the implementation of electrostrictive materials is much simpler for small-scale systems (MEMS). Hence, several studies have analyzed the energy conversion performance of electrostrictive polymers, both in terms of actuation and energy harvesting.
|
4 |
Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d'énergieEddiai, Adil 24 May 2013 (has links) (PDF)
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d'explorer la potentialité des polymères électro-actifs pour une application de récupération d'énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d'une caractérisation électrique et mécanique de ces polymères et composites afin d'évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d'essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d'énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d'énergie récupérée. Ainsi qu'une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l'étude de l'efficacité de la conversion électromécanique pour la récupération d'énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l'amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d'assurer un meilleur rendement énergétique.
|
5 |
Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d’énergie / Electro-active polymers : Modeling and characterization and its application to energy harvestingEddiai, Adil 24 May 2013 (has links)
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d’explorer la potentialité des polymères électro-actifs pour une application de récupération d’énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d’une caractérisation électrique et mécanique de ces polymères et composites afin d’évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d’essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d’énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d’énergie récupérée. Ainsi qu’une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l’étude de l’efficacité de la conversion électromécanique pour la récupération d’énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l’amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d’assurer un meilleur rendement énergétique. / The concept of energy harvesting generally relates to the process of using ambient energy, which is converted, primarily (but not exclusively) into electrical energy in order to power small and autonomous electronic devices. Recent trends in both industrial and research fields have focused on electro-active polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, high flexibility, and processability. The purpose of this research work is to explore the potential of electro-active polymers for application of mechanical energy harvesting. At first, a synthesis of the composite based on polyurethane (PU) and P (VDF-TrFE-CFE) was performed, followed by electrical and mechanical characterization of these polymers and composites in order to evaluate their intrinsic parameters. The second part of this thesis concerns electromechanical characterization of these polymers. An electromechanical analytic modeling is detailed in order to determine the physical behavior of electrostrictive polymers and the variations of intrinsic parameters. This modeling is validated by a series of tests using a test bench. The last part of this work consists to evaluate the electromechanical performance of electrostrictive polymers for the mechanical energy harvesting. Two new techniques are tested in order to maximize the density of energy recovered. As well as a comparison against those classic has been performed. Excellent potential of these techniques for energy harvesting has been demonstrated. The second point is about the study of the electromechanical conversion efficiency for scavenging mechanical energy using spectral analysis FFT. It was shown that this method allows predicting the energy efficiency of our polymers, in accordance with the results predicted by the model. The last point focuses on improving the efficiency of electromechanical conversion by using cellular polypropylene electrets to ensure better energy efficiency.
|
Page generated in 0.0447 seconds