• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 2
  • Tagged with
  • 26
  • 26
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamique des tourbillons pour quelques modèles de transport non-linéaires / Vortex dynamics for some non-linear transport models

Hassainia, Zineb 08 June 2015 (has links)
Cette thèse est consacrée à l'étude théorique de quelques modèles d'évolution non-linéaires issus de la mécanique des fluides. Nous distinguons trois parties indépendantes. La première partie de la thèse traite essentiellement de l'existence des poches de tourbillon en rotation uniforme (appelées aussi V-states) pour un modèle quasi-géostrophique non visqueux. Notre étude est répartie sur deux chapitres où les poches présentent des structures topologiques différentes. Dans le premier chapitre nous étudions le cas simplement connexe et nous validons l'existence de ces structures dans un voisinage du tourbillon de Rankine en utilisant des techniques de bifurcation. Dans le deuxième chapitre nous abordons le cas doublement connexe où la poche admet un seul trou. Plus précisément, proche d'un anneau donné, nous décrivons cette famille par des branches dénombrables bifurquant de cet anneau à certaines valeurs explicites des vitesses angulaires liées aux fonctions de Bessel. Notre étude théorique a été complétée par des simulations numériques portant sur les V-states limites et un bon nombre de constatations ont été formulées ouvrant la porte à de nouvelles perspectives de recherche. La seconde partie concerne l'étude du problème de Cauchy pour le système de Boussinesq non visqueux 2D avec des données initiales de type Yudovich. Le problème est dans un certain sens critique à cause de quelques termes comportant la transformée de Riesz dans la formulation tourbillon-densité. Nous donnons une réponse positive pour une sous-classe comprenant les poches de tourbillon régulières et singulières. Dans la dernière partie nous analysons le problème de la limite incompressible pour les équations d'Euler isentropiques 2D associées à des données initiales très mal préparées et pour lesquelles les tourbillons ne sont pas forcément bornés mais appartiennent plutôt à des espaces de type ''BMO'' à poids. On utilise principalement deux ingrédients: d'un côté les estimations de Strichartz pour contrôler la partie acoustique. D'un autre côté, on se sert de la structure de transport compressible du tourbillon et on démontre une estimation de propagation linéaire dans l'esprit d'un travail récent de Bernicot et Keraani mené dans le cas incompressible. / In this dissertation, we are concerned with the study of some non-linear evolution models arising in fluid mechanics. We distinguish three independent parts. The first part of the thesis deals with the existence of the rotating vortex patches (called also V-states) for an inviscid quasi-geostrophic model. Our study is divided into two chapters dealing with different topological structures of the V-states. In the first chapter we study the simply connected case and we prove the existence of such structures in a neighborhood of the Rankine vortices by using the bifurcation theory. In the second chapter we discuss the doubly connected case where the patches admit only one hole. More precisely, close to a given annulus we describe this family by countable branches bifurcating from this annulus at some explicit angular velocities related to Bessel functions of the first kind. Our theoretical study was completed by numerical simulations on the limiting V-states and a number of interesting numerical observation were formulated opening new research perspectives. The second part of the thesis concerns the local well-posedness theory for the inviscid Boussinesq system with rough initial data. The problem is in some sense critical due to some terms involving Riesz transforms in the vorticity-density formulation. We give a positive answer for a special sub-class of Yudovich data including smooth and singular vortex patches. In the last part we address the problem of the incompressible limit for the 2D isentropic fluids associated to ill-prepared initial data and for which the vortices are not necessarily bounded and belong to some weighted BMO spaces. We mainly use two ingredients: On one hand, the Strichartz estimates to control the acoustic part and prove that it does not contribute for low Mach number. On the other hand, we use the transport compressible structure of the vorticity and we establish a linear propagation estimate in the spirit of a recent work of Bernicot and Keraani conducted in the incompressible case. The first part of the thesis deals with the existence of the rotating vortex patches (called also V-states) for an inviscid quasi-geostrophic model. Our study is divided into two chapters dealing with different topological structures of the V-states. In the first chapter we study the simply connected case and we prove the existence of such structures in a neighborhood of the Rankine vortices by using the bifurcation theory. In the second chapter we discuss the doubly connected case where the patches admit only one hole. More precisely, close to a given annulus we describe this family by countable branches bifurcating from this annulus at some explicit angular velocities related to Bessel functions of the first kind. Our theoretical study was completed by numerical simulations on the limiting V-states and a number of interesting numerical observation were formulated opening new research perspectives. The second part of the thesis concerns the local well-posedness theory for the inviscid Boussinesq system with rough initial data. The problem is in some sense critical due to some terms involving Riesz transforms in the vorticity-density formulation. We give a positive answer for a special sub-class of Yudovich data including smooth and singular vortex patches. In the last part we address the problem of the incompressible limit for the 2D isentropic fluids associated to ill-prepared initial data and for which the vortices are not necessarily bounded and belong to some weighted BMO spaces. We mainly use two ingredients: On one hand, the Strichartz estimates to control the acoustic part and prove that it does not contribute for low Mach number. On the other hand, we use the transport compressible structure of the vorticity and we establish a linear propagation estimate in the spirit of a recent work of Bernicot and Keraani conducted in the incompressible case.
22

Conception et analyse de schémas d'ordre très élevé distribuant le résidu : application à la mécanique des fluides

Larat, Adam 06 November 2009 (has links)
La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : - la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; - la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (\LxF); - la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme $\L^{\infty}$ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLs scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma \LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. / Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, automotive, naval industry etc... One of the main challenges to push further the limits of the simulation codes is to increase their accuracy within a fixed set of resources (computational power and/or time). Two possible approaches to deal with this issue are either to contruct discretizations yielding, on a given mesh, very high order accurate solutions, or to construct compact, massively parallelizable schemes to minimize the computational time by means of a high performance parallel implementation. In this thesis, we try to combine both approaches by investigating the contruction and implementation of very high order Residual Distribution Schemes (RDS) with the most possible compact stencil. The manuscript starts with a review of the mathematical theory of hyperbolic Conservation Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions we are trying to approximate, in order to be able to link these properties with the ones of the sought discrete solutions. Next, we describe the three main steps toward the construction of a very high order RDS: - The definition of higher order polynomial representations of the solution over polygons and polyhedra; - The design of low order compact conservative RD schemes consistent with a given (high degree) polynomial representation. Among these, particular accest is put on the simplest, given by a generalization of the Lax-Friedrich's (\LxF) scheme; - The design of a positivity preserving nonlinear transformation, mapping first-order linear schemes onto nonlinear very high order schemes. In the manuscript, we show formally that the schemes obtained following this procedure are consistent with the initial CL, that they are stable in $L^{\infty}$ norm, and that they have the proper truncation error. Even though all the theoretical developments are carried out for scalar CLs, remarks on the extension to systems are given whenever possible. Unortunately, when employing the first order \LxF scheme as a basis for the construction of the nonlinear discretization, the final nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying solutions one observes the appearance of high frequency spurious modes. In order to kill these modes, a streamline dissipation term is added to the scheme. The analytical implications of this modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on a correct discretization of the boundary conditions for the very high order RDS proposed. The theory is then extensively verified on a variety of scalar two dimensional test cases. Both triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the approach. The results obtained in these tests confirm all the theoretical expectations in terms of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider solutions of the two dimensional Euler equations of gas dynamics. The results obtained are quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems involving solid wall boundaries. Further investigation of this problem is under way. We then discuss the parallel implementation of the schemes, and analyze and illustrate the performance of this implementation on large three dimensional problems. Due to the preliminary character and the complexity of these three dimensional problems, a rather qualitative discussion is made for these tests cases: the overall behavior seems to be the correct one, but more work is necessary to assess the properties of the schemes in three dimensions.
23

Sur l'approximation modulationnelle du problème des ondes de surface : Consistance et existence de solutions pour les systèmes de Benney-Roskes / Davey-Stewartson à dispersion exacte / On the modulational approximation of the water waves problem : Consistency and well-posedness of the full dispersion Benney-Roskes and Davey-Stewartson systems

Obrecht, Caroline 29 June 2015 (has links)
Cette thèse s'inscrit dans l'étude des modèles asymptotiques aux équations des ondes de surface dans le régime modulationnel. Le problème des ondes de surface consiste à décrire le mouvement - sous l'influence de la gravitation et éventuellement de tension de surface - d'un fluide dans un domaine délimité par la surface libre du fluide et par un fond fixe. Dans l'étude de ce problème, on s'intéresse en particulier aux ondes se propageant à la surface du fluide.Dans le régime modulationnel, on considère l'évolution des ondes de surface sous forme de paquets d'ondes de faible amplitude se propageant dans une direction. Il est bien connu que la motion de l'enveloppe du paquet d'onde sur une échelle de temps d'ordre t = O(1/ϵ²), où ϵ est un petit paramètre désignant l'amplitude, est décrite approximativement par des systèmes d'équations appelés systèmes de Benney-Roskes (BR) / Davey-Stewartson (DS). Ces systèmes sont donnés par une équation de type Schrödinger cubique couplée à une équation d'ondes. L'approximation classique de BR / DS est bien établie et a été largement étudiée au cours des dernières décennies. Récemment, David Lannes a introduit une version à "dispersion exacte" de ces systèmes. Contrairement aux équations de BR / DS standard, les systèmes à dispersion exacte préservent la relation de dispersion des équations des ondes de surface. On devrait obtenir ainsi une description plus riche du vrai comportement dynamique des ondes de surface que dans le cas de l'approximation classique.Le systèmes de BR / DS à dispersion exacte sont étudiés dans cette thèse. La première partie est consacrée à la déduction formelle des systèmes de BR / DS en tant que modèles asymptotiques aux équations des ondes de surface. Nous donnons en outre un résultat sur la consistance de cette approximation.Ensuite, nous étudions le problème de Cauchy pour le système de BR à dispersion exacte. En fait, afin de justifier la consistance de l'approximation de BR avec les équations exactes, on doit prouver que ce système est bien posé (en espace de Sobolev) sur une échelle de temps d'ordre O(1/ϵ). Ceci est un problème ouvert même dans le cas classique, du moins pour le système de dimension 1 + 2. De même, nous ne pouvons pas démontrer l'existence de solutions en temps long pour le système de BR à dispersion exacte, mais nous obtenons un théorème d'existence locale (t = O(1)) à condition que la tension de surface soit assez forte. Si nous nous restreignons au système de dimension 1+1, nous pouvons enlever la contrainte sur la tension de surface. L'idée de la preuve d'existence locale, qui est inspirée par un travail de Schochet-Weinstein, est d'écrire le système de BR comme un système symétrique hyperbolique quasi-linéaire perturbé par un terme dispersif ne contribuant pas à l'énergie du système. Ainsi, nous pouvons appliquer les méthodes standard de résolution des systèmes hyperboliques.En modifiant le terme non-linéaire du système de BR de dimension 1+1 sans changer l'ordre de consistance, nous obtenons un système qui est bien posé sur l'échelle de temps appropriée O(1/ϵ). Cependant, cette démarche ne peut pas être généralisée au cas de dimension 1+2.Dans le dernier chapitre de cette thèse, nous donnons quelques résultats sur les systèmes de Davey-Stewartson à dispersion exacte. Pour les systèmes de DS, il est suffisant de démontrer qu'ils sont bien posés localement afin de justifier leur consistance avec les équations des ondes de surface. La théorie d'existence de solutions est assez complète pour le système de DS classique. Dans le cas de dispersion exacte cependant, les équations paraissent mal posées généralement, si bien que l'existence locale ne peut être démontrée pour l'instant que pour quelques cas particuliers simples. / This thesis is concerned with asymptotic models to the water wave equations in the modulational regime. The water wave equations describe the motion - under the influence of gravity and possibly surface tension - of an inviscid fluid in a domain which is bounded by a fixed bottom from below and the free surface of the fluid from above. In the study of the water wave problem, one is in particular interested by waves propagating on the surface of the fluid.In the modulational regime, one considers the evolution of surface waves under the form of small amplitude wave packets traveling in one direction. It is well known that the evolution of the wave packet envelope on the long time scale t = O(1/ϵ²), where ϵ is a small parameter denoting the amplitude of the wave, is approximately governed by a set of equations known as the Benney-Roskes (BR) / Davey-Stewartson (DS) systems. These systems are essentially given by a cubic Schrödinger-type equation coupled to a wave equation. The classical BR / DS approximation is well established and has been largely studied in the past decades. Recently, David Lannes has introduced a "full dispersion" version of these systems. In contrast to the standard BR / DS equations, the full dispersion systems preserve the linear dispersion relation of the full water wave equations, and should therefore give a richer description of the original wave dynamics than the classical approximation.The full dispersion BR / DS systems are studied in this thesis. In the first part, we formally derive the full dispersion BR / DS approximation from the water wave equations both in the case of zero and positive surface tension. The formal derivation is completed by a consistency result.We then study well-posedness in Sobolev space of the full dispersion BR system. In order to justify consistency of the BR approximation with the full water wave equations, one needs to show that the BR system is well posed on a time scale of order O(1/ϵ). This is an open problem even in the classical case, at least for the 1 + 2 dimensional system. We also do not obtain well-posedness on the long time scale for the full dispersion BR system, but we can show that it is locally well-posed in the case of sufficiently strong surface tension, and additionally in the zero surface tension case if we restrict ourselves to the 1+1 dimensional system. The proof is inspired by a paper of Schochet-Weinstein, and is based on writing the full dispersion BR system as a quasilinear symmetric hyperbolic system with dispersive perturbation, where the dispersive terms do not contribute to the energy. We can therefore apply classical solution methods for hyperbolic systems.By modifying the nonlinear part of the 1+1 dimensional full dispersion BR system without changing consistency, we obtain a system that is well-posed on the appropriate O(1/ϵ) time scale. This approach however does not generalize to the 1+2 dimensional case.In the last chapter of the thesis, we give some results on the full dispersion DS systems, which are obtained as special limits of the full dispersion BR system. For these systems, it is sufficient to prove local well-posedness in order to show consistency with the water wave equations. For the standard DS systems, local well-posedness theory is quite complete. For the full dispersion systems, the analysis is complicated by some nonlocal operators and the equations seem to be generally ill-posed. There are however some simple cases where local well-posedness can be shown. We also discuss some modifications of the full dispersion DS system that might allow to solve it for a larger range of parameters.
24

Contribution à la l'analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud

Dellacherie, Stéphane 03 November 1998 (has links) (PDF)
Lors de la formation du point chaud dans une expérience de Fusion par Confinement Inertiel, le plasma au centre de la sphère de deutérium-tritium peut être loin de l'équilibre thermodynamique local. Dans la première partie, on décrit donc un modèle cinétique ionique de type Vlasov-Fokker-Planck susceptible de prendre en compte ces déséquilibres. Après avoir rappelé les grandes étapes pour résoudre numériquement le système obtenu, on introduit la notion de moyenne entropique pour définir un nouveau schéma numérique traitant les collisions ion-électron homogènes en espace. Ce schéma est conservatif, stable et entropique sous un critère de type CFL dans sa version explicite. Dans sa version semi-implicite, on établit que ce schéma conserve l'équilibre thermodynamique. Le temps de calcul pour résoudre les équations cinétiques étant très important, il est nécessaire d'étudier la possibilité de ne résoudre ces équations que là où c'est nécessaire c'est à dire principalement au centre de la sphère de deutérium-tritium. Dans la seconde partie, on propose donc une technique de couplage cinétique-fluide, la formation du point chaud étant traitée avec le modèle cinétique, le reste avec les équations d'Euler à deux températures (températures ionique et électronique). Les ions deutérium et tritium pouvant ne pas être à l'équilibre thermodynamique, on s'est ensuite posé la question de la validité des formules analytiques donnant le taux de réaction nucléaire, formules établies en supposant que le plasma est à l'équilibre thermodynamique. Dans la troisième partie, on propose donc une méthode de type Monte-Carlo pour résoudre numériquement les équations cinétiques de type Boltzmann qui décrivent les réactions de fusion thermonucléaire et on montre qu'effectivement, les déséquilibres thermodynamiques rencontrés lors de la formation du point chaud peuvent invalider les formules usuelles.
25

Couplage d'un schéma aux résidus distribués à l'analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage

Froehly, Algiane 07 September 2012 (has links) (PDF)
Lors de simulations numériques d'ordre élevé, la discrétisation sous-paramétrique du domaine de calcul peut générer des erreurs dominant l'erreur liée à la discrétisation des variables. De nombreux travaux proposent d'utiliser l'analyse isogéométrique afin de mieux représenter les géométries et de résoudre ce problème. Nous présenterons dans ce travail le couplage du schéma aux résidus distribués limité et stabilisé de Lax-Frieirichs avec l'analyse isogéométrique. En particulier, nous construirons une famille de fonctions de base permettant de représenter exactement les coniques et définies tant sur les éléments triangulaires que quadrangulaires : les fonctions de base de Bernstein rationnelles. Nous nous intéresserons ensuite à la génération de maillages précis pour l'analyse isogéométrique. Notre méthode consiste à créer un maillage courbe à partir d'un maillage linéaire par morceaux de la géométrie. Le maillage obtenu en sortie de notre procédure est non-structuré, conforme et assure la continuité de nos fonctions de base sur tout le domaine. Pour finir, nous décrirons les différentes méthodes d'adaptation de maillages développées : l'élévation d'ordre et le raffinement isotrope. Bien évidemment, la géométrie exacte du maillage courbe d'entrée est préservée au cours des processus d'adaptation.
26

Simulation du bruit d'écoulements anisothermes par méthodes hybrides pour de faibles nombres de Mach

Nana, Cyril 20 September 2012 (has links) (PDF)
Cette étude porte sur le calcul numérique du champ acoustique rayonné par des écoulements subsoniques turbulents présentant des inhomogénéités de température. Des méthodes hybrides sont développées grâce à un développement de Janzen-Rayleigh des équations de Navier-Stokes. L'écoulement est résolu par un calcul quasi incompressible puis les perturbations acoustiques sont propagées selon deux méthodes : les équations d'Euler linéarisées (EEL) et l'approximation à faible nombre de Mach perturbée (PLMNA). Les méthodes sont validées sur des cas simples puis appliquées à une couche de mélange isotherme et anisotherme en développement spatial.

Page generated in 0.1213 seconds