Spelling suggestions: "subject:"équations d'euler"" "subject:"équations d'ruler""
11 |
Modèles mathématiques de la théorie du transfert radiatifLin, Chunjin 19 June 2007 (has links) (PDF)
On s'intéresse dans ce travail à différents modèles de transfert radiatif, décrivant les interactions entre la matière et les photons. Les radiations sont décrites en termes d'énergie et flux d'énergie, dans le cas macroscopique, le flfluide environnant est quant à lui décrit par les équations d'Euler (modèle d'hydrodynamique radiative). Dans le cas microscopique, le champ radiatif est vu comme une collection des photons interagissant avec la matière par des mécanismes d'absorption-émission. Ces mécanismes dépendent des états d'excitation interne et d'ionisation de la matière. On commence par monter l'existence locale de solutions régulières pour un système couplant les équations d'Euler et l'équation du transfert radiatif. Ce système est obtenu à partir du bilan d'énergie et d'impulsion totale. Puis on fait une discussion asymptotique pour ce modèle dans le régime hors équilibre et on obtient un système simple couplant les équations d'Euler et une équation elliptique. On montre l'existence des profifils de choc (réguliers) pour ce système, et la régularité de ces profils en fonction de l'amplitude du choc. Puis on étudie la stabilité asymptotique de ces profifils. Enfifin, on présente une étude d'un système décrivant le champ radiatif et les états internes de la matière. On montre l'existence de solutions pour ce système et on établit rigoureusement la convergence vers l'équilibre statistique. Les résultats théoriques sont illustrés par des simulations numériques.
|
12 |
Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides.<br />Application à la prédiction haute-fidélité du bang sonique.Loseille, Adrien 18 December 2008 (has links) (PDF)
En mécanique des fluides (CFD), l'adaptation de maillage anisotrope est reconnue pour sa capacité à réduire le ratio entre le nombre de degrés de liberté et la précision du calcul. Cependant, son application dans le cas d'écoulements compressibles avec des chocs pose les problématiques suivantes : (i) les schémas numériques d'ordre élevé de type shock capturing retombent à l'ordre un dans les chocs, (ii) les senseurs utilisés pour l'adaptation prescrivent dans les chocs des tailles qui tendent vers zéro. Il est donc nécessaire de prescrire une taille minimale. On perd alors tout l'intérêt d'une adaptation anisotrope. On apporte une réponse à ces problématiques en considérant une adaptation anisotrope multi-échelles du maillage basée sur le modèle de maillage continu. On alors montre que le processus adaptatif converge dans les chocs si le schéma numérique utilisé est non compressif. La prescription d'une taille minimale n'est plus nécessaire. On retrouve également un ordre deux de convergence dans tout le domaine, même en présence de chocs. Si on se donne des informations supplémentaires (fonctionnelle précise à observer, équation aux dérivées partielles, schéma numérique utilisé pour la résoudre) les méthodes génériques précédentes ne sont plus op- timales dans la distribution des degrés de liberté. On étudie cette problématique dans le cas particulier des équations d'Euler pour des fonctionnelles scalaires. Ce type d'étude est très bien adapté pour le calcul de grandeurs d'intérêt comme la portance ou la traînée en aérodynamique. On propose une estimation d'erreur a priori pour le contrôle de l'erreur d'approximation sur une fonctionnelle. Cette estimation est ensuite minimisée sur l'espace des maillages continus afin de décrire le maillage anisotrope optimal. Enfin, on applique l'adaptation multi-échelles à la prédiction haute-fidélité du bang sonique.
|
13 |
Méthodes de type Galerkin discontinu pour la propagation des ondes en aéroacoustiqueBernacki, Marc 09 1900 (has links) (PDF)
On s'est intéressé dans ce travail à la résolution numérique des équations d'Euler linéarisées autour d'un écoulement stationnaire, subsonique et assez régulier. Dans le but d'obtenir des matrices symétriques dans ces équations, et in fine, une équation d'équilibre énergétique, nous considérons la linéarisation d'une forme symétrique des équations d'Euler tridimensionnelles. Nous proposons un schéma non-diffusif de type Galerkin discontinu en domaine temporel (GDDT) s'appuyant sur une formulation centrée-élément avec des ux numériques totalement centrés et un schéma en temps explicite de type saute-mouton, ce qui permet d'obtenir une approximation sans dissipation et fournit une estimation précise des variations de l'énergie aéroacoustique. En effet, dans le cas général de la linéarisation autour d'un écoulement non-uniforme, il existe une équation d'équilibre énergétique au niveau continu que nous vérifions au niveau discret. Nous montrons qu'il existe un terme source discret permettant de conserver exactement l'énergie ce qui permet de prouver la stabilité de notre schéma. Ainsi, notre schéma non-diffusif de type GDDT fournit un outil précis pour contrôler des phénomènes tel que les instabilités de Kelvin-Helmholtz. Nous illustrons la capacité de notre méthode aussi bien sur plusieurs cas tests académiques que sur différentes configurations complexes grâce à une implémentation parallèle.
|
14 |
Approximation multi-échelles de l'équation de VlasovMouton, Alexandre 16 September 2009 (has links) (PDF)
Une des difficultés fondamentales de la simulation numérique de plasmas magnétisés est l'existence d'échelles de temps et d'espace mettant en jeu plusieurs ordres de grandeurs très différents. Afin de réaliser des simulations numériques efficaces de ces phénomènes physiques, il est essentiel de développer des modèles et des méthodes numériques adaptés à ces problèmes. <br />A ce jour, la notion de convergence 2-échelles introduite par G. Allaire et G. Nguetseng est un des outils permettant de dériver rigoureusement des limites multi-échelles, ce qui nous permet d'obtenir des modèles limites qu'il est possible de discrétiser avec une méthode numérique usuelle : nous parlons alors d'une méthode numérique 2-échelles. <br />L'objectif de cette thèse est de développer une méthode semi-lagrangienne 2 échelles sur un modèle de type Vlasov gyrocinétique afin de simuler un plasma soumis à un champ magnétique fort du même type que ceux utilisés pour le projet ITER. Cependant, comme les phénomènes physiques à simuler sont assez complexes et comme nous ne savons que peu de choses sur le comportement d'une méthode numérique 2-échelles sur un modèle non-linéaire, il convient de procéder par étapes avant de développer une telle méthode sur un modèle gyrocinétique. <br />Dans une première partie, nous construisons une méthode de volumes finis 2-échelles sur les équations d'Euler 1D isentropiques faiblement compressibles. Bien que ce modèle soit assez différent d'un modèle de type Vlasov, il n'en est pas moins un cadre de travail relativement simple pour étudier le comportement d'une méthode numérique 2-échelles face à un modèle non-linéaire. <br />Dans une seconde partie, nous nous basons sur le modèle limite développé par E. Frénod, F. Salvarani et E. Sonnendrücker afin de construire une méthode semi-lagrangienne 2-échelles pour simuler des faisceaux de particules en géométrie axisymétrique. Même si le modèle de Vlasov axisymétrique utilisé est différent d'un modèle gyrocinétique, il constitue un contexte idéal pour établir les bases d'une méthode semi-lagrangienne 2 échelles.<br />Enfin, dans une troisième partie, nous utilisons la convergence 2-échelles afin d'améliorer les résultats de convergence faible-* établis par M. Bostan en 2007, et nous proposons une méthode semi-lagrangienne en avant permettant de valider numériquement ces résultats.
|
15 |
Méthodes de correction de pression pour les équations de Navier-Stokes compressiblesKheriji, Walid 28 November 2011 (has links) (PDF)
Cette thèse porte sur le développement de schémas semi-implicites à pas fractionnaires pour les équations de Navier-Stokes compressibles ; ces schémas entrent dans la classe des méthodes de correction de pression.La discrétisation spatiale choisie est de type "à mailles décalées :éléments finis mixtes non conformes (éléments finis de Crouzeix-Raviart ou Rannacher-Turek) ou schéma MAC classique.Une discrétisation en volumes finis décentrée amont du bilan de masse garantit la positivité de la masse volumique.La positivité de l'énergie interne est obtenue en discrétisant le bilan d'énergie interne continu, par une méthode de volumes finis décentrée amont, enfin, et en couplant ce bilan d'énergie interne discret à l'étape de correction de pression.On effectue une discrétisation particulière en volumes finis sur un maillage dual du terme de convection de vitesse dans le bilan de quantité de mouvement et une étape de renormalisation de la pression; ceci permet de garantir le contrôle au cours du temps de l'intégrale de l'énergie totale sur le domaine.L'ensemble de ces estimations a priori implique en outre, par un argument de degré topologique, l'existence d'une solution discrète. L'application de ce schéma aux équations d'Euler pose une difficulté supplémentaire.En effet, l'obtention de vitesses de choc correctes nécessite que le schéma soit consistant avec l'équation de bilan d'énergie totale, propriété que nous obtenons comme suit. Tout d'abord, nous établissons un bilan discret (local) d'énergie cinétique.Ce dernier comporte des termes sources, que nous compensons ensuite dans le bilan d'énergie interne. Les équations d'énergie cinétique et interne sont associées au maillage dual et primal respectivement, et ne peuvent donc être additionnées pour obtenir un bilan d'énergie totale ; cette dernière équation est toutefois retrouvée, sous sa forme continue, à convergence : si nous supposons qu'une suite de solutions discrètes converge lorsque le pas de temps et d'espace tendent vers 0,, nous montrons en effet, en 1D au moins, que la limite en satisfait une forme faible.Ces résultats théoriques sont confortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes.
|
16 |
Modélisation MHD et simulation numérique par des méthodes volumes finis. Application aux plasmas de fusion / MHD modeling and numerical simulation with finite volume-type methods. Application to fusion plasmaEstibals, Élise 02 May 2017 (has links)
Ce travail traite de la modélisation des plasmas de fusion qui est ici abordée à l'aide d'un modèle Euler bi-températures et du modèle de la magnétohydrodynamique (MHD) idéale et résistive. Ces modèles sont tout d'abord établis à partir des équations de la MHD bi-fluide et nous montrons qu'ils correspondent à des régimes asymptotiques différents pour des plasmas faiblement ou fortement magnétisés. Nous décrivons ensuite les méthodes de volumes finis pour des maillages structurés et non-structurés qui ont été utilisées pour approcher les solutions de ces modèles. Pour les trois modèles mathématiques étudiés dans cette thèse, les méthodes numériques reposent sur des schémas de relaxation. Afin d'appliquer ces méthodes aux problèmes de fusion par confinement magnétique, nous décrivons comment modifier les méthodes de volumes finis pour les appliquer à des problèmes formulés en coordonnées cylindriques tout en gardant une formulation conservative forte des équations. Enfin nous étudions une stratégie pour maintenir la contrainte de divergence nulle du champ magnétique qui apparait dans les modèles MHD. Une série de cas tests numériques pour les trois modèles est présentée pour différentes géométries afin de valider les méthodes numériques proposées. / This work deals with the modeling of fusion plasma which is discussed by using a bi-temperature Euler model and the ideal and resistive magnetohydrodynamic (MHD) ones. First, these models are established from the bi-fluid MHD equations and we show that they correspond to different asymptotic regimes for lowly or highly magnetized plasma. Next, we describe the finite volume methods for structured and non-structured meshes which have been used to approximate the solution of these models. For the three mathematical models studied in this thesis, the numerical methods are based on relaxation schemes. In order to apply those methods to magnetic confinement fusion problems, we explain how to modify the finite volume methods to apply it to problem given in cylindrical coordinates while keeping a strong conservative formulation. Finally, a strategy dealing with the divergence-free constraint of the magnetic field is studied. A set of numerical tests for the three models is presented for different geometries to validate the proposed numerical methods.
|
17 |
Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2D Lagrange-projection / High-order fluid-structure coupling with conservative Lagrange-remap finite volume schemes on Cartesian gridsDakin, Gautier 09 November 2017 (has links)
Ce travail est consacré à l’étude numérique de l’interaction entre un fluide compressible et une structure indéformable, en adaptant une famille récente de schémas d’ordre très élevé à la prise en compte de conditions aux bords particulières entre le fluide et la structure. Plus précisément,on évalue l’apport de schémas d’ordre strictement supérieur à 3 par rapport à des stratégies plus classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu’il est possible de réaliser le couplage à tout ordre et qu’il existe des configurations pour lesquelles on observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions aux bords. Un schéma sur grilles cartésiennes décalées et d’ordre très élevé est proposé pour la résolution des équations d’Euler en 1D/2D. Ce schéma est basé sur le formalisme Lagrange-projection et bien que formulé en énergie interne assure conservation et consistance faible grâce à un correctif en énergie interne. Parallèlement, l’étude pour les systèmes hyperboliques linéaires de discrétisation à l’ordre très élevé des conditions aux bords est faite. Elle met en évidence la nécessité pour l’ordre élevé de s’intéresser à la stabilité des schémas ainsi obtenus. À partir de ces travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour les équations d’Euler en 1D et 2D. Enfin, une procédure de couplage entre fluide compressible et structure indéformable est proposée. / This work is devoted to the construction of stable and high-order numerical methods in order to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done, which highlights theoretical results about hyperbolic system of conservation laws, as well as the methods available in the literature for the hydrodynamics simulation and the numericalboundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-remap formalism, and although formulated in internal energy, ensures both conservation and weak consistency thanks to an internal energy corrector. In the same time, the study of high-order numerical boundary treatment for linear hyperbolic system is done. It highlights the necessity to focus especially on the linear stability of the effective scheme. Starting from the linear results, the numerical boundary treatment with imposed normal velocity is done for Euler equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is realized, using the designed procedure for numerical boudary treatment.
|
18 |
Schémas volumes finis à mailles décalées pour la dynamique des gaz / Finite volume schemes on staggered grids for gas dynamicsLlobell, Julie 24 October 2018 (has links)
L'objectif de cette thèse est de développer un nouveau schéma numérique du type volumes finis pour la dynamique des gaz. Dans deux articles, F.Berthelin, T.Goudon et S.Minjeaud proposent de résoudre le système des équations d'Euler barotrope en dimension 1 d'espace, avec un schéma d'ordre 1 fonctionnant sur grilles décalées et dont la conception des flux est inspirée des schémas cinétiques. Nous proposons d'enrichir ce schéma afin qu'il puisse résoudre le système des équations d'Euler barotrope ou complet, en dimension 2 d'espace sur maillage cartésien ou non structuré, possiblement à l'ordre 2 et le cas échéant à bas nombres de Mach. Nous commencerons par développer une version 2D du schéma sur grilles cartésiennes (ou MAC) à l’ordre 2 via une méthode de type MUSCL, d'abord pour les équations barotropes puis pour les équations complètes. Ces dernières demandent de traiter une équation d’énergie supplémentaire et l’un des problèmes -résolu- est de trouver une définition discrète convenable de l’énergie totale telle qu'elle satisfasse une équation conservative locale. Dans un troisième chapitre nous étudierons le passage à la limite du compressible vers l'incompressible et nous verrons comment utiliser les atouts de notre schéma afin de le modifier et d'en faire un schéma Asymptotic Preserving pour des écoulements à bas nombres de Mach. Dans un quatrième temps nous proposerons une adaptation du schéma sur des maillages non structurés. Notre approche sera fortement inspirée des méthodes DDFV et pourra présenter des avantages dans les régimes à faibles nombres de Mach. Cette thèse se termine par un cinquième chapitre issu d’une collaboration lors du CEMRACS 2017, où le point de vue considéré n’est plus macroscopique mais microscopique. Nous commencerons par étudier un modèle micro/macro idéalisé auquel un processus stochastique a été ajouté puis nous tenterons d'en déduire un modèle à grande échelle pour un système fortement couplé, qui soit consistant avec la description micro/macro sous-jacente du problème physique. / The objective of this thesis is to develop a new numerical scheme of finite volume type for gas dynamics. In two articles, F.Berthelin, T.Goudon and S.Minjeaud propose to solve the barotropic Euler system in dimension 1 of space, with a first order scheme that works on staggered grids and of which fluxes are inspired by kinetic schemes. We propose to enhance this scheme so that it can solve the barotropic or complete Euler systems, in dimension 2 of space on Cartesian or unstructured grids, possibly at order 2 and at Low Mach numbers where appropriate. We begin with the development of a 2D version of the scheme on Cartesian (or MAC) grids, at order 2 via a MUSCL type method, for the barotropic equations at first and then for the complete equations. The latter require to handle with an additional energy equation and one of the -solved- problems is to find a suitable discrete definition of the total energy such that it satisfies a local conservative equation. In a third chapter we study the transition from the compressible case to the incompressible limit and we shall see how to use the advantages of our initial scheme in order to make it an Asymptotic Preserving scheme at low Mach numbers. In a fourth chapter we propose an adaptation of the scheme on unstructured meshes. Our approach is strongly inspired by the DDFV methods and may have advantages in low-Mach regimes.This thesis ends with a fifth chapter issued from a collaboration during CEMRACS 2017, where the considered point of view is no longer macroscopic but microscopic. We begin by studying a simplified micro/macro model with an added stochastic process and then we attempt to deduce a large-scale model for a strongly coupled system which has to be consistent with the underlying micro / macro description of the physical problem.
|
19 |
Conception et Analyse de Schémas Distribuant le Résidu d'Ordre Très Élevé. Application à la Mécanique des Fluides.Larat, Adam 06 November 2009 (has links) (PDF)
La simulation numérique est aujourd'hui un outils majeur dans la conception des objets aérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un des défis majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, tout en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut être atteint par deux approches différentes, soit en construisant une discrétisation fournissant sur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact et massivement parallélisable, de manière à minimiser le temps de calcul en distribuant le problème sur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deux approches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS) d'ordre très élevé et de compacité maximale. Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant les Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre en évidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière à injecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite les trois étapes principales de la construction d'un schéma RD d'ordre très élevé : \begin{itemize} \item la représentation polynomiale d'ordre très élevé de la solution sur des polygones et des polyèdres; \item la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives, consistantes avec une représentation polynomiale des données de très haut degré. Parmi elles, une attention particulière est donnée à la plus simple, issue d'une généralisation du schéma de Lax-Friedrichs (LxF); \item la mise en place d'une procédure préservant la positivité qui transforme tout schéma stable et linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manière non oscillante. \end{itemize} Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants avec la CL considérée, qu'ils sont stables en norme $\L^{\infty}$ et qu'ils ont la bonne erreur de troncature. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CL scalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible. Malheureusement, lorsqu'on considère le schéma LxF, le problème algébrique non linéaire associé à la recherche de la solution stationnaire est en général mal posé. En particulier, on observe l'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les effets et l'évaluation numérique sont précisément détaillés. Enfin, nous nous intéressons à une discrétisation correcte des conditions limites pour le schéma d'ordre élevé proposé. Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de montrer la généralité de notre approche, des maillages composés uniquement de triangles et des maillages hybrides, composés de triangles et de quadrangles, sont utilisés. Les résultats obtenus par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations d'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de convergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessite encore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci est analysée et illustrée à travers des cas test tridimensionnel de grande taille. Du fait de la relative nouveauté et de la complexité des problèmes tridimensionels, seuls des remarques qualitatives sont faites pour ces cas test : le comportement global semble être bon, mais plus de travail est encore nécessaire pour définir les propriétés du schémas en trois dimensions. Enfin, nous présentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle les termes visqueux sont traités par une formulation de type Galerkin. La consistance de cette formulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujet de la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasius pour laquelle nous obtenons des résultats satisfaisants. Ce travail offre une meilleure compréhension des propriétés générales des schémas RD d'ordre très élevé et soulève de nouvelles questions pour des améliorations futures. Ces améliorations devrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ou ENO/WENO, aussi bien qu'aux schémas Galerkin Discontinu d'ordre très élevé, de plus en plus populaires.
|
20 |
Simulation du bruit d'écoulements anisothermes par méthodes hybrides pour de faibles nombres de Mach / Noise computation of non isothermal flows by hybrid methods for low Mach numbersNana, Cyril 20 September 2012 (has links)
Cette étude porte sur le calcul numérique du champ acoustique rayonné par des écoulements subsoniques turbulents présentant des inhomogénéités de température. Des méthodes hybrides sont développées grâce à un développement de Janzen-Rayleigh des équations de Navier-Stokes. L'écoulement est résolu par un calcul quasi incompressible puis les perturbations acoustiques sont propagées selon deux méthodes : les équations d'Euler linéarisées (EEL) et l'approximation à faible nombre de Mach perturbée(PLMNA). Les méthodes sont validées sur des cas simples puis appliquées à une couche de mélange isotherme et anisotherme en développement spatial. / This study focuses on the numerical calculation of the acoustic field radiated by subsonic turbulent flows with temperature inhomogeneities. Hybrid methods are developed through a Rayleigh-Janzen expansion of the Navier-Stokes equations. The flow is solved in a quasi-incompressible way then the acoustic disturbances are propagated by two methods : the linearized Euler's equations (EEL) and the perturbed low Mach number approximation (PLMNA). The methods are validated on simple cases and then applied to an isothermal and non isothermal spatially evolving mixing layer.
|
Page generated in 0.1204 seconds