Spelling suggestions: "subject:"équations primitive""
1 |
Régularité et asymptotique pour les équations primitivesPetcu, Madalina Elena 16 May 2005 (has links) (PDF)
Ce mémoire composé de quatre chapitres, réunit des résultats sur l'existence, l'unicité et la régularité des solutions des Equations Primitives (EPs) des océans et de l'atmosphère, en dimension deux et trois d'espace (Chapitres 1--3), ainsi qu'une étude sur le comportement asymptotique des EPs quand le nombre de Rossby tend vers zero (Chapitre 4) ; les conditions aux limites sont de type périodique dans tous les cas.<br /><br />Dans le premier chapitre, on considère les EPs de l'océan en dimension deux d'espace (écoulement tridimensionnel indépendant de la variable y). On montre d'abord l'existence globale en temps d'une solution faible ainsi que l'existence et l'unicité d'une solution forte. Puis, on prouve l'existence d'une solution plus régulière (jusqu' à la régularité C-infini).<br /><br />Dans le deuxième chapitre on montre, pour un modèle semblable à celui du premier chapitre que, pour une force analytique en temps à valeurs dans un espace du type de Gevrey, et une donnée initiale dans un espace de Sobolev convenable, les solutions des EPs appartiennent, sur un certain intervalle de temps, à un espace de Gevrey.<br /><br />Le troisième chapitre est dans la continuité naturelle des deux premiers chapitres. On considère ici les EPs en dimension trois d'espace et on étudie la régularité du type de Sobolev et du type de Gevrey pour les solutions.<br /><br />Le dernier chapitre de la thèse est dédié à l'étude du comportement asymptotique des EPs (sous la forme introduite au premier chapitre), quand le nombre de Rossby tend vers zero. On arrive ici a "moyenner" la solution exacte très oscillante quand le nombre de Rossby est petit, en utilisant une méthode de renormalisation.
|
2 |
Étude de l'approximation hydrostatique de Stokes & d'une équation dégénéréeDahoumane, Fabien 27 November 2009 (has links) (PDF)
Dans ce travail, on étudie quelques problèmes d'équations aux dérivées partielles elliptiques que l'on rencontre dans la modélisation d'écoulements réels, comme par exemple la circulation océanique globale. La thèse est divisée en trois parties. La partie 1 est consacrée à l'étude du problème de Stokes dit « hydrostatique » en dimension trois posé dans un domaine borné non nécessairement cylindrique. L'originalité de ces travaux provient du fait que l'on considère des données non homogènes, tant dans l'équation de conservation de la masse que sur la condition aux limites portée sur la vitesse verticale. Pour traiter cette nouvelle situation, on se ramène par équivalence à résoudre un système d'équations primitives linéarisées non homogènes, que l'on résout avec une approche entièrement fonctionnelle et optimale grâce au cadre fonctionnel que l'on considère. Par conséquent, on montre deux cas d'existence et d'unicité d'une solution faible au problème de Stokes hydrostatique avec conditions non homogènes. Les partie 2 et 3 sont consacrées à l'étude d'un modèle elliptique avec un coefficient de diffusion qui peut dégénérer. Ce type d'équations intervient également dans des problèmes géophysiques, que ce soit dans des questions de modélisation de circulation globale, mais aussi dans des problèmes d'infiltration et de milieux poreux. On étudie le cas du demi-espace pour lequel on obtient une théorie optimale de régularité des solutions faibles. On traite enfin le cas général pour lequel on obtient un cas d'existence et d'unicité de solution faible et un résultat de régularité associé.
|
3 |
Modélisation mathématique et assimilation de données lagrangiennes pour l'océanographieNodet, Maëlle 18 November 2005 (has links) (PDF)
Dans ce travail nous nous sommes intéressés à des problèmes de modélisation et d'assimilation de données en océanographie, tant d'un point de vue théorique que numérique. L'étude de l'océan est cruciale pour de nombreuses raisons (changement climatique, météorologie, navigation commerciale et militaire, etc.). Dans une première partie nous étudions les équations primitives linéaires tridimensionnelles de l'océan, et nous donnons des résultats nouveaux de régularité en calculant explicitement le terme de pression. Dans une deuxième partie nous étudions l'assimilation variationnelle de données lagrangiennes dans un modèle d'océan. L'assimilation de données est l'ensemble des méthodes qui permettent de combiner de façon optimale, en vue d'effectuer des prévisions, deux sortes d'informations disponibles sur un système physique : les observations d'une part et les équations du modèle d'autre part. Nous utilisons une méthode variationnelle pour assimiler des données lagrangiennes, à savoir les positions de flotteurs dérivant dans l'océan. Nous commençons par établir de nouvelles estimations a priori pour les équations primitives afin d'étudier le problème théorique de contrôle optimal associé. Puis nous décrivons l'implémentation de la méthode variationnelle dans un modèle réaliste d'océan aux équations primitives. Enfin nous effectuons de nombreuses expériences numériques et notamment plusieurs études de sensibilité, qui montrent que l'assimilation de données lagrangiennes est techniquement réalisable et pertinente d'un point de vue océanographique.
|
Page generated in 0.1281 seconds