• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mouvements périodiques et quasi-périodiques dans le problème des n corps

Féjoz, Jacques 09 December 2010 (has links) (PDF)
La première moitié de ce mémoire est consacrée à la théorie KAM et au théorème d'Arnold sur la stabilité des systèmes planétaires. Ce travail a fait l'objet d'un article en préparation et d'une publication~:\footnote{ \url{http://people.math.jussieu.fr/~fejoz/articles.html}} -- ''Twisted conjugacies and invariant tori theorems''~\cite{Fejoz:2010a}. Je redémontre une forme normale de champs de vecteurs due à Moser~\cite{Moser:1967}, pour les perturbations de champs de vecteurs admettant un tore invariant quasi-périodique diophantien. Cette forme normale, que j'appelle une \emph{conjugaison tordue} est une porte d'entrée pour démontrer des théorèmes de tores invariants dus à Kolmogorov, Arnold, Rüssmann et Herman, ainsi que d'autres théorèmes, par exemple pour des champs de vecteurs dissipatifs. J'introduis une notion de \emph{conjugaison hypothétique}, comme un intermédiaire commun aux théorèmes de tores invariants avec une condition de non-dégénérescence faible, améliore certaines estimations sur la dépendance fonctionnelle de la forme normale, et donne quelques applications nouvelles à la mécanique céleste. -- ''Démonstration du théorème d'Arnold sur la stabilité du système planétaire (d'après Herman)''~\cite{Fejoz:2004}. Cet article donne une démonstration du théorème d'Arnold pour $N$ planètes dans l'espace $\R^3$. La démonstration de~\cite{Fejoz:2010a} est une clarification et une amélioration de la partie abstraite de ~\cite{Fejoz:2004}. Arnold avait publié le résultat remarquable suivant~: dans le problème planétaire newtonien à $N$ planètes, si les masses des planètes sont assez petites, il existe dans l'espace des phases un sous-ensemble invariant de mesure de Lebesgue strictement positive, formé de tores invariants quasipériodiques de dimension $3N-1$~\cite{Arnold:1963}. La suggestion d'Arnold pour le démontrer en toute généralité était de fixer la direction du moment cinétique, pour se débarrasser de la dégénérescence due à l'invariance par rotation, puis d'appliquer sa version dégénérée du théorème de Kolmogorov pour trouver des tores lagrangiens invariants au voisinage de la singularité séculaire elliptique (mouvements képlériens elliptiques circulaires horizontaux). Cette stratégie de réduction partielle ne marche pas à cause d'une résonance mystérieuse, découverte par Herman, qui généralise à $N$ planètes une résonance déjà connue de Clairaut dans le problème de la lune. Cette résonance n'avait pas été remarquée dans le cas de $2$ planètes, où la réduction des noeuds de Jacobi permet de réduire complètement le problème par la symétrie de rotation, en coordonnées de Delaunay (je rappelle en appendice la définition de ces coordonnées, et propose une nouvelle démonstration de leur caractère symplectique). Ici, je démontre par récurrence sur le nombre de planètes, en suivant les idées d'Herman, que l'image locale de l'application fréquence (vue comme fonction des demi grands axes des planètes) est contenue dans un plan vectoriel de codimension deux, mais dans aucun plan vectoriel de codimension supérieure. Un argument de la théorie des intersections lagrangiennes permet alors d'appliquer un théorème de tores invariants qui ne requiert qu'une faible condition de non-dégénérescence. La seconde moitié de ce mémoire traite d'orbites périodiques et relativement périodiques (i.e. périodiques en repère tournant), dans le problème global des $N$ corps. Elle aussi est basée sur deux articles. -- ''The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium'' (avec A. Chenciner)~\cite{Chenciner:2008}. Nous démontrons qu'exactement deux familles de solutions relativement périodiques bifurquent de la solution d'équilibre relatif de Lagrange~: la famille homographique et la famille $\mathcal{P}_{12}$. De plus, en restriction à la variété centrale de dimension $4$ de l'équilibre relatif de Lagrange, la dynamique locale est une application twist d'un anneau de section, bordé par les deux familles. Un autre article montre que la famille $\mathcal{P}_{12}$ se termine, de l'autre côté, à la solution en Huit de Chenciner-Montgomery~\cite{Chenciner:2005a}. Entre ces deux extrémités, on sait que la famille $\mathcal{P}_{12}$ existe comme famille des minima de l'action lagrangienne parmi les lacets possédant sa classe de symétrie. Une telle famille pourrait a priori être non unique, ou discontinue, mais les expériences numériques ne laissent guère de doute (voir la figure dans la préface). -- ''Unchained polygons and the {$N$}-body problem'' (avec A. Chenciner)~\cite{Chenciner:2009}. L'équilibre relatif de Lagrange apparaît dans ce qui précède comme le centre organisateur du Huit. Nous montrons que le même phénomène se produit avec l'équilibre relatif du carré à quatre masses égales, qui apparaît comme centre organisateur de la famille du Hip-Hop. Plus généralement, beaucoup de classes de solutions récemment découvertes appartiennent aux familles de Lyapunov issues d'équilibres relatifs symétriques. Dans un repère tournant où elles deviennent périodiques, ces familles acquièrent des symétries remarquables. Nous étudions la possibilité de les prolonger globalement comme minima de l'action lagrangienne en un repère tournant, au sein de leur classe de symétrie. Une étape préliminaire est de déterminer les intervalles de la fréquence de rotation du repère sur lesquels un équilibre relatif est l'unique minimum absolu de l'action. Nous nous focalisons ensuite sur notre exemple principal, l'équilibre relatif du polygone régulier à $N$ sommets. L'existence locale de familles de Lyapunov verticales repose sur le fait que la restriction de la partie quadratique de l'énergie aux directions centrales est définie positive. Nous calculons les groupes de symétrie $G_{\frac rs}(N,k,\eta)$ des familles de Lyapunov verticales, et les utilisons pour prolonger les familles globalement. Les exemples paradigmatiques sont les familles de Huits pour un nombre impair de corps et les familles de Hip-Hops pour un nombre pair. Ce sont précisément les éléments de ces deux types de familles qui peuvent être des minima globaux. Dans les autres cas, des obstructions apparaissent, qui sont dues à des isomorphismes entre les groupes de symétrie de différentes famille~; c'est le cas des \emph{chaînes chorégraphiques}, dont les éléments sont seulement des minima locaux (sauf pour $N=3$). Une autre particularité intéressante de ces chaînes est le rôle décisif joué par la parité, en particulier à travers la valeur prise par le moment cinétique. Pour les familles de Lyapunov bifurquant d'un polygone à au plus $6$ sommets, nous vérifions en outre que la torsion locale est non dégénérée, ce qui justifie de prendre la rotation du repère comme paramètre. Cet article montre la fécondité des considérations de symétrie, comme technique de démonstration mais aussi comme guide heuristique dans la recherche de solutions remarquables. Le problème des $n$ corps, depuis longtemps à l'origine de nombreuses théories mathématiques, garde entier, de part la variété des techniques nécessaires à son étude, son pouvoir de fascination.
2

Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions

Campos Serrano, Juan 14 December 2012 (has links) (PDF)
Dans cette thèse, nous étudions l'ensemble des solutions d'équations aux dérivées partielles résultant de modèles d'astrophysique et de biologie. Nous répondons aux questions de l'existence, mais aussi nous essayons de décrire le comportement de certaines familles de solutions lorsque les paramètres varient. Tout d'abord, nous étudions deux problèmes issus de l'astrophysique, pour lesquels nous montrons l'existence d'ensembles particuliers de solutions dépendant d'un paramètre à l'aide de la méthode de réduction de Lyapunov-Schmidt. Ensuite un argument de perturbation et le théorème du Point xe de Banach réduisent le problème original à un problème de dimension finie, et qui peut être résolu, habituellement, par des techniques variationnelles. Le reste de la thèse est consacré à l'étude du modèle Keller-Segel, qui décrit le mouvement d'amibes unicellulaires. Dans sa version plus simple, le modèle de Keller-Segel est un système parabolique-elliptique qui partage avec certains modèles gravitationnels la propriété que l'interaction est calculée au moyen d'une équation de Poisson / Newton attractive. Une différence majeure réside dans le fait que le modèle est défini dans un espace bidimensionnel, qui est expérimentalement consistant, tandis que les modèles de gravitationnels sont ordinairement posés en trois dimensions. Pour ce problème, les questions de l'existence sont bien connues, mais le comportement des solutions au cours de l'évolution dans le temps est encore un domaine actif de recherche. Ici nous étendre les propriétés déjà connues dans des régimes particuliers à un intervalle plus large du paramètre de masse, et nous donnons une estimation précise de la vitesse de convergence de la solution vers un profil donné quand le temps tend vers l'infini. Ce résultat est obtenu à l'aide de divers outils tels que des techniques de symétrisation et des inégalités fonctionnelles optimales. Les derniers chapitres traitent de résultats numériques et de calculs formels liés au modèle Keller-Segel
3

Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions / Attractive models in Astrophysics and Biology : Critical Points and Large Time Asymtotics

Campos Serrano, Juan 14 December 2012 (has links)
Dans cette thèse, nous étudions l'ensemble des solutions d'équations aux dérivées partielles résultant de modèles d'astrophysique et de biologie. Nous répondons aux questions de l'existence, mais aussi nous essayons de décrire le comportement de certaines familles de solutions lorsque les paramètres varient. Tout d'abord, nous étudions deux problèmes issus de l'astrophysique, pour lesquels nous montrons l'existence d'ensembles particuliers de solutions dépendant d'un paramètre à l'aide de la méthode de réduction de Lyapunov-Schmidt. Ensuite un argument de perturbation et le théorème du Point xe de Banach réduisent le problème original à un problème de dimension finie, et qui peut être résolu, habituellement, par des techniques variationnelles. Le reste de la thèse est consacré à l'étude du modèle Keller-Segel, qui décrit le mouvement d'amibes unicellulaires. Dans sa version plus simple, le modèle de Keller-Segel est un système parabolique-elliptique qui partage avec certains modèles gravitationnels la propriété que l'interaction est calculée au moyen d'une équation de Poisson / Newton attractive. Une différence majeure réside dans le fait que le modèle est défini dans un espace bidimensionnel, qui est expérimentalement consistant, tandis que les modèles de gravitationnels sont ordinairement posés en trois dimensions. Pour ce problème, les questions de l'existence sont bien connues, mais le comportement des solutions au cours de l'évolution dans le temps est encore un domaine actif de recherche. Ici nous étendre les propriétés déjà connues dans des régimes particuliers à un intervalle plus large du paramètre de masse, et nous donnons une estimation précise de la vitesse de convergence de la solution vers un profil donné quand le temps tend vers l'infini. Ce résultat est obtenu à l'aide de divers outils tels que des techniques de symétrisation et des inégalités fonctionnelles optimales. Les derniers chapitres traitent de résultats numériques et de calculs formels liés au modèle Keller-Segel / In this thesis we study the set of solutions of partial differential equations arising from models in astrophysics and biology. We answer the questions of existence but also we try to describe the behavior of some families of solutions when parameters vary. First we study two problems concerned with astrophysics, where we show the existence of particular sets of solutions depending on a parameter using the Lyapunov-Schmidt reduction method. Afterwards a perturbation argument and Banach's Fixed Point Theorem reduce the original problem to a finite-dimensional one, which can be solved, usually, by variational techniques. The rest of the thesis is de-voted to the study of the Keller-Segel model, which describes the motion of unicellular amoebae. In its simpler version, the Keller-Segel model is a parabolic-elliptic system which shares with some gravitational models the property that interaction is computed through an attractive Poisson / Newton equation. A major difference is the fact that it is set in a two-dimensional setting, which experimentally makes sense, while gravitational models are ordinarily three-dimensional. For this problem the existence issues are well known, but the behaviour of the solutions during the time evolution is still an active area of research. Here we extend properties already known in particular regimes to a broader range of the mass parameter, and we give a precise estimate of the convergence rate of the solution to a known profile as time goes to infinity. This result is achieved using various tools such as symmetrization techniques and optimal functional inequalities. The last chapters deal with numerical results and formal computations related to the Keller-Segel model

Page generated in 0.0573 seconds