Spelling suggestions: "subject:"εξαγωγή"" "subject:"εξαγωγής""
11 |
Αναγνώριση επιθέσεων άρνησης εξυπηρέτησηςΓαβρίλης, Δημήτρης 15 February 2008 (has links)
Στη Διδακτορική Διατριβή μελετώνται 3 κατηγορίες επιθέσεων άρνησης εξυπηρέτησης (Denial-of-Service). Η πρώτη κατηγορία αφορά επιθέσεις τύπου SYN Flood, μια επίθεση που πραγματοποιείται σε χαμηλό επίπεδο και αποτελεί την πιο διαδεδομένη ίσως κατηγορία. Για την αναγνώριση των επιθέσεων αυτών εξήχθησαν 9 στατιστικές παράμετροι οι οποίες τροφοδότησαν τους εξής ταξινομητές: ένα νευρωνικό δίκτυο ακτινικών συναρτήσεων, ένα ταξινομητή κ-κοντινότερων γειτόνων και ένα εξελικτικό νευρωνικό δίκτυο. Ιδιαίτερη σημασία στο σύστημα αναγνώρισης έχουν οι παράμετροι που χρησιμοποιήθηκαν. Για την κατασκευή και επιλογή των παραμέτρων αυτών, προτάθηκε μια νέα τεχνική η οποία χρησιμοποιεί ένα γενετικό αλγόριθμο και μια γραμματική ελεύθερης σύνταξης για να κατασκευάζει νέα σύνολα παραμέτρων από υπάρχοντα σύνολα πρωτογενών χαρακτηριστικών. Στη δεύτερη κατηγορία επιθέσεων, μελετήθηκαν επιθέσεις άρνησης εξυπηρέτησης στην υπηρεσία του παγκόσμιου ιστού (www). Για την αντιμετώπιση των επιθέσεων αυτών προτάθηκε η χρήση υπερσυνδέσμων-παγίδων οι οποίοι τοποθετούνται στον ιστοχώρο και λειτουργούν σαν νάρκες σε ναρκοπέδιο. Οι υπερσύνδεσμοι-παγίδες δεν περιέχουν καμία σημασιολογική πληροφορία και άρα είναι αόρατοι στους πραγματικούς χρήστες ενώ είναι ορατοί στις μηχανές που πραγματοποιούν τις επιθέσεις. Στην τελευταία κατηγορία επιθέσεων, τα μηνύματα ηλεκτρονικού ταχυδρομείου spam, προτάθηκε μια μέθοδος κατασκευής ενός πολύ μικρού αριθμού παραμέτρων και χρησιμοποιήθηκαν για πρώτη φορά νευρωνικά δίκτυα για την αναγνώριση τους. / The dissertation analyzes 3 categories of denial-of-service attacks. The first category concerns SYN Flood attacks, a low level attack which is the most common. For the detection of this type of attacks 9 features were proposed which acted as inputs for the following classifiers: a radial basis function neural network, a k-nearest neighbor classifier and an evolutionary neural network. A crucial part of the proposed system is the parameters that act as inputs for the classifiers. For the selection and construction of those features a new method was proposed that automatically selects constructs new feature sets from a predefined set of primitive characteristics. This new method uses a genetic algorithm and a context-free grammar in order to find the optimal feature set. In the second category, denial-of-service attacks on the World Wide Web service were studied. For the detection of those attacks, the use of decoy-hyperlinks was proposed. Decoy hyperlinks, are hyperlinks that contain no semantic information and thus are invisible to normal users but are transparent to the programs that perform the attacks. The decoys act like mines on a minefield and are placed optimally on the web site so that the detection probability is maximized. In the last type of attack, the email spam problem, a new method was proposed for the construction of a very small number of features which are used to feed a neural network that for the first time is used to detect such attacks.
|
12 |
Δημιουργία περιλήψεων από ακολουθίες βίντεο στο συμπιεσμένο πεδίοΡήγας, Ιωάννης 08 December 2008 (has links)
Στην παρούσα εργασία υλοποιούμε ένα σύστημα δημιουργίας περιλήψεων από ακολουθίες βίντεο. Υλοποιούνται όλα τα βήματα
που θα πρέπει να ακολουθηθούν (εξαγωγή χαρακτηριστικών-ανίχνευση πλάνων-εξαγωγή χαρακτηριστικών καρέ) έτσι ώστε να
εξαχθεί ένα σύνολο καρέ (χαρακτηριστικά καρέ) τα οποία να συνοψίζουν νοηματικά το περιεχόμενο μιας ακολουθίας βίντεο.
Η επεξεργασία του βίντεο γίνεται απευθείας στο συμπιεσμένο πεδίο και συγκεκριμένα σε συμπιεσμένα αρχεία MPEG-1-2,
έτσι ώστε τα αποτελέσματα να εξάγονται σε σχετικά μικρό χρόνο και με σχετικά χαμηλές απαιτήσεις σε αποθηκευτικό
χώρο και επεξεργαστική ισχύ. / In this paper a video summarization system is being constructed. We acomplish all the needed steps (feature extraction
-shot detection-keyframe extraction) in order to extract a set of frames (keyframes) that capture the semantic content of the
video sequence. The processing of the video takes place directly at the compressed domain (at MPEG-1-2 video files). Thus we obtain results at relatively little time and with relatively low storage and computer power demands.
|
13 |
Επίλυση του προβλήματος sudoku με χρήση ευφυών τεχνικών από εκπαιδευτικό ρομπότΑλεξανδρίδης, Ζαχαρίας 07 April 2011 (has links)
Στη διπλωματική λύνουμε το πρόβλημα του sudoku με χρήση του εκπαιδευτικού ρομπότ της Lego, το LEGO Mindstorm NXT. Το εκπαιδευτικό ρομπότ αυτό δεν έχει συγκεκριμένη μορφή αλλά αποτελείται από αλληλοσυνδεόμενα μεταξύ τους πλαστικά μέρη. Με χρήση αυτών κατασκευάσαμε ένα όχημα που αποτελεί παραλλαγή οχήματος από άλλη εργασία. Το όχημα αυτό μπορεί να κινείται μόνο μπροστά και πίσω. Διαθέτει έναν βραχίονα που μπορεί να κινεί δεξιά-αριστερά και στον οποίο εφαρμόζεται ένας αισθητήρας φωτεινότητας. Τέλος, στον βραχίονα υπάρχει θέση για στυλό.
Το πρόβλημα του sudoku που δίνεται στο ρομπότ είναι εκτυπωμένο σε ένα χαρτί Α4. Το ρομπότ αναλαμβάνει να το αναγνωρίσει με τον αισθητήρα, να το επιλύσει και να το αποτυπώσει με τη χρήση του στυλό. Για την επίτευξη αυτού του στόχου επιστρατεύονται αλγόριθμοι ρομποτικής και αλγόριθμοι τεχνητής νοημοσύνης. Συγκεκριμένα για την πλοήγηση του οχήματος εφαρμόζεται μετρική και τοπολογική πλοήγησης, στη συνέχεια για την αναγνώριση του προβλήματος και την ταυτοποίηση κάθε εικόνας που λαμβάνεται υλοποιήσαμε αλγόριθμους μορφολογικής επεξεργασία και τέλος για την επίλυση του προβλήματος sudoku υλοποιήσαμε και συγκρίναμε δύο αλγόριθμους, την αναζήτησης κατά βάθος και την αναζήτηση κατά βάθος με διάδοση περιορισμών. Οι τελικοί αλγόριθμοι που αναπτύχθηκαν διαπιστώσαμε ότι πετυχαίνουν το σκοπό τους αφού το όχημα αναγνωρίζει τους αριθμούς του δοσμένου προβλήματος με ποσοστό επιτυχίας 95%, λύνει τα περισσότερα προβλήματα σε λιγότερο από ένα δευτερόλεπτο και συμπληρώνει επιτυχώς τα κελιά του sudoku με τους σωστούς αριθμούς.
Πέρα από αυτές τη σύγκριση των αλγορίθμων θεωρούμε ότι η μελέτη ενός τέτοιου συστήματος είναι ιδανική για εισαγωγή σε θέματα ρομποτικής και μπορεί να χρησιμοποιηθεί ως εκπαιδευτικό εργαλείο πειραματισμού. Μάλιστα ο κώδικας μας σχολιάζεται επαρκώς σε αυτή την εργασία για να είναι ευκολότερη η κατανόηση του. Εκτός αυτού έχουμε αναπτύξει και πρόγραμμα αλληλεπίδρασης χρήστη-ρομπότ μέσω κονσόλας. / We solve the problem of sudoku using the educational robot LEGO Mindstorm NXT, made by LEGO. This educational robot doesn't have specific form but consists of interlinked plastics. We constructed a vehicle that is a variant from another work. This vehicle can move only forward and back. It has an arm that can move side to side and is equipped with a light sensor and a marker.
The problem of sudoku is given to the robot in printed form on a A4 paper. The robot at first recognize the problem with the sensor, then it resolves it and finally writes the solution down by using the pen. To achieve this goal we implemented various algorithms. Specifically, we studied robotic algorithms such as metric and topological navigation. Moreover, to identify the printed problem we processed every captured image morphologically and finally to solve the sudoku instance we implemented and compared two methods, first-depth search and first-depth search with constraint propagation. We should mention that our code is written in Java for the lejOS firmware. The final code is capable of recognizing the numbers of the given problem with a success rate of 95%, solving most problems in less than a second and completing the cells on the paper with the correct numbers.
Finally, we have developed an accompanying program that is usable for debugging purposes and for calibrating the robot. Even more, it can be used as education tool.
|
14 |
Ανάπτυξη μεθόδου με σκοπό την αναγνώριση και εξαγωγή θεματικών λέξεων κλειδιών από διευθύνσεις ιστοσελίδων του ελληνικού Διαδικτύου / Keyword identification within Greek URLsΒονιτσάνου, Μαρία-Αλεξάνδρα 16 January 2012 (has links)
Η αύξηση της διαθέσιμης Πληροφορίας στον Παγκόσμιο Ιστό είναι ραγδαία. Η παρατήρηση αυτή παρότρυνε πολλούς ερευνητές να επικεντρώσουν το έργο τους στην εξαγωγή χρήσιμων γνωρισμάτων από διαδικτυακά έγγραφα, όπως ιστοσελίδες, εικόνες, βίντεο, με σκοπό τη ενίσχυση της διαδικασίας κατηγοριοποίησης ιστοσελίδων. Ένας πόρος που περιέχει πληροφορία και δεν έχει διερευνηθεί διεξοδικά για γλώσσες εκτός της αγγλικής, είναι η διεύθυνση ιστοσελίδας (URL- Uniform Recourse Locator). Το κίνητρο της διπλωματικής αυτής εργασίας είναι το γεγονός ότι ένα σημαντικό υποσύνολο των χρηστών του διαδικτύου δείχνει ενδιαφέρον για δικτυακούς πόρους, των οποίων οι διευθύνσεις URL περιλαμβάνουν όρους προερχόμενους από τη μητρική τους γλώσσα (η οποία δεν είναι η αγγλική), γραμμένους με λατινικούς χαρακτήρες. Προτείνεται μέθοδος η οποία θα αναγνωρίζει και θα εξάγει τις λέξεις-κλειδιά από διευθύνσεις ιστοσελίδων (URLs), εστιάζοντας στο ελληνικό Διαδίκτυο και συγκεκριμένα σε URLs που περιέχουν ελληνικούς όρους. Το κύριο ζήτημα της προτεινόμενης μεθόδου είναι ότι οι ελληνικές λέξεις μπορούν να μεταγλωττίζονται με λατινικούς χαρακτήρες σύμφωνα με πολλούς διαφορετικούς τρόπους, καθώς και το γεγονός ότι τα URLs μπορούν να περιέχουν περισσότερες της μιας λέξεις χωρίς κάποιο διαχωριστικό. Παρόλη την ύπαρξη προηγούμενων προσεγγίσεων για την επεξεργασία ελληνικού διαδικτυακού περιεχομένου, όπως αναζητήσεις στο ελληνικό διαδίκτυο και αναγνώριση οντότητας σε ελληνικές ιστοσελίδες, καμία από τις παραπάνω δεν βασίζεται σε διευθύνσεις URL. Επιπλέον, έχουν αναπτυχθεί πολλές τεχνικές για την κατηγοριοποίηση ιστοσελίδων με βάση κυρίως τις διευθύνσεις URL, αλλά καμία δεν διερευνά την περίπτωση του ελληνικού διαδικτύου. Η προτεινόμενη μέθοδος περιέχει δύο βασικά στοιχεία: το μεταγλωττιστή και τον κατακερματιστή. Ο μεταγλωττιστής, βασισμένος σε ένα ελληνικό λεξικό και ένα σύνολο κανόνων, μετατρέπει τις λέξεις που είναι γραμμένες με λατινικούς χαρακτήρες σε ελληνικούς όρους ενώ παράλληλα ο κατακερματιστής τμηματοποιεί τη διεύθυνση URL σε λέξεις με νόημα, εξάγοντας, έτσι τελικά ελληνικούς όρους που αποτελούν λέξεις κλειδιά. Η πειραματική αξιολόγηση της προτεινόμενης μεθόδου σε δείγμα ελληνικών URLs αποδεικνύει ότι μπορεί να αξιοποιηθεί εποικοδομητικά στην αυτόματη αναγνώριση λέξεων-κλειδιών σε ελληνικά URLs. / The available information on the WWW is increasing rapidly. This observation has triggered many researchers to focus their work on extracting useful features from web documents that would enhance the task of web classification. A quite informative resource that has not been thoroughly explored for languages other than English, is the uniform recourse locator (URL). Motivated by the fact that a significant part of the Web users is interested in web resources, whose URLs contain terms from their non English native languages,written using Latin characters, we propose a method that identifies and extracts successfully keywords within URLs focusing on the Greek Web and especially ons URLs, containing Greek terms. The main issue of this approach is that Greek words can be transliterated to Latin characters in many different ways based on how the words are pronounced rather than on how they are written. Although there are previous attempts on similar issues, like Greek web searches and entity recognition in Greek Web Pages, none of them is based on URLs. In addition, there are many techniques on web page categorization based mainly on URLs but noone explores the case of Greek terms. The proposed method uses a three-step approach; firstly, a normalized URL is divided into its basic components, according to URI protocol (scheme :// host / path-elements / document . extension). The domain part is splitted on the apperance of punctuation marks or numbers. Secondly, domain-tokens are segmented into meaningful tokens using a set of transliteration rules and a Greek dictionary. Finally, in order to identify useful keywords, a score is assigned to each extracted keyword based on its length and whether the word is nested in another word. The algorithm is evaluated on a random sample of 1,000 URLs collected manually. We perform a human-based evaluation comparing the keywords extracted automatically with the keywords extracted manually when no other additional information than the URL is available. The results look promising.
|
15 |
Σύγκριση μεθόδων δημιουργίας έμπειρων συστημάτων με κανόνες για προβλήματα κατηγοριοποίησης από σύνολα δεδομένωνΤζετζούμης, Ευάγγελος 31 January 2013 (has links)
Σκοπός της παρούσας εργασίας είναι η σύγκριση διαφόρων μεθόδων κατηγοριοποίησης που στηρίζονται σε αναπαράσταση γνώσης με κανόνες μέσω της δημιουργίας έμπειρων συστημάτων από γνωστά σύνολα δεδομένων. Για την εφαρμογή των μεθόδων και τη δημιουργία και υλοποίηση των αντίστοιχων έμπειρων συστημάτων χρησιμοποιούμε διάφορα εργαλεία όπως: (α) Το ACRES, το οποίο είναι ένα εργαλείο αυτόματης παραγωγής έμπειρων συστημάτων με συντελεστές βεβαιότητας. Οι συντελεστές βεβαιότητος μπορούν να υπολογίζονται κατά δύο τρόπους και επίσης παράγονται δύο τύποι έμπειρων συστημάτων που στηρίζονται σε δύο διαφορετικές μεθόδους συνδυασμού των συντελεστών βεβαιότητας (κατά MYCIN και μιας γενίκευσης αυτής του MYCIN με χρήση βαρών που υπολογίζονται μέσω ενός γενετικού αλγορίθμου). (β) Το WEKA, το οποίο είναι ένα εργαλείο που περιέχει αλγόριθμους μηχανικής μάθησης. Συγκεκριμένα, στην εργασία χρησιμοποιούμε τον αλγόριθμο J48, μια υλοποίηση του γνωστού αλγορίθμου C4.5, που παράγει δένδρα απόφασης, δηλ. κανόνες. (γ) Το CLIPS, το οποίο είναι ένα κέλυφος για προγραμματισμό με κανόνες. Εδώ, εξάγονται οι κανόνες από το δέντρο απόφασης του WEKA και υλοποιούνται στο CLIPS με ενδεχόμενες μετατροπές. (δ) Το FuzzyCLIPS, το οποίο επίσης είναι ένα κέλυφος για την δημιουργία ασαφών ΕΣ. Είναι μια επέκταση του CLIPS που χρησιμοποιεί ασαφείς κανόνες και συντελεστές βεβαιότητος. Εδώ, το έμπειρο σύστημα που παράγεται μέσω του CLIPS μετατρέπεται σε ασαφές έμπειρο σύστημα με ασαφοποίηση κάποιων μεταβλητών. (ε) Το GUI Ant-Miner, το οποίο είναι ένα εργαλείο για την εξαγωγή κανόνων κατηγοριοποίησης από ένα δοσμένο σύνολο δεδομένων. με τη χρήση ενός μοντέλου ακολουθιακής κάλυψης, όπως ο αλγόριθμος AntMiner.
Με βάση τις παραπάνω μεθόδους-εργαλεία δημιουργήθηκαν έμπειρα συστήματα από πέντε σύνολα δεδομένων κατηγοριοποίησης από τη βάση δεδομένων UCI Machine Learning Repository. Τα συστήματα αυτά αξιολογήθηκαν ως προς την ταξινόμηση με βάση γνωστές μετρικές (ορθότητα, ευαισθησία, εξειδίκευση και ακρίβεια). Από τη σύγκριση των μεθόδων και στα πέντε σύνολα δεδομένων, εξάγουμε τα παρακάτω συμπεράσματα: (α) Αν επιθυμούμε αποτελέσματα με μεγαλύτερη ακρίβεια και μεγάλη ταχύτητα, θα πρέπει μάλλον να στραφούμε στην εφαρμογή WEKA. (β) Αν θέλουμε να κάνουμε και παράλληλους υπολογισμούς, η μόνη εφαρμογή που μας παρέχει αυτή τη δυνατότητα είναι το FuzzyCLIPS, θυσιάζοντας όμως λίγη ταχύτητα και ακρίβεια. (γ) Όσον αφορά το GUI Ant-Miner, λειτουργεί τόσο καλά όσο και το WEKA όσον αφορά την ακρίβεια αλλά είναι πιο αργή μέθοδος. (δ) Σχετικά με το ACRES, λειτουργεί καλά όταν δουλεύουμε με υποσύνολα μεταβλητών, έτσι ώστε να παράγεται σχετικά μικρός αριθμός κανόνων και να καλύπτονται σχεδόν όλα τα στιγμιότυπα στο σύνολο έλεγχου. Στα σύνολα δεδομένων μας το ACRES δεν θεωρείται πολύ αξιόπιστο υπό την έννοια ότι αναγκαζόμαστε να δουλεύουμε με υποσύνολο μεταβλητών και όχι όλες τις μεταβλητές του συνόλου δεδομένων. Όσο πιο πολλές μεταβλητές πάρουμε ως υποσύνολο στο ACRES, τόσο πιο αργό γίνεται. / The aim of this thesis is the comparison of several classification methods that are based on knowledge representation with rules via the creation of expert systems from known data sets. For the application of those methods and the creation and implementation of the corresponding expert systems, we use various tools such as: (a) ACRES, which is a tool for automatic production of expert systems with certainty factors. The certainty factors can be calculated via two different methods and also two different types of expert systems can be produced based on different methods of certainty propagation (that of MYCIN and a generalized version of MYCIN one that uses weights calculated via a genetic algorithm). (b) WEKA, which is a tool that contains machine learning algorithms. Specifically, we use J48, an implementation of the known algorithm C4.5, which produces decision trees, which are coded rules. (c) CLIPS, which is a shell for rule based programming. Here, the rules encoded on the decision true produced by WEKA are extracted and codified in CLIPS with possible changes. (d) FuzzyCLIPS, which is a shell for creating fuzzy expert systems. It's an extension of CLIPS that uses fuzzy rules and certainty factors. Here, the expert system created via CLIPS is transferred to a fuzzy expert system by making some variables fuzzy. (e) GUI Ant-Miner, which is a tool for classification rules extraction from a given data set, using a sequential covering model, such as the AntMiner algorithm.
Based on the above methods-tools, expert systems were created from five (5) classification data sets from the UCI Machine Learning Repository. Those systems have been evaluated according to their classification capabilities based on known metrics (accuracy, sensitivity, specificity and precision). From the comparison of the methods on the five data sets, we conclude the following: (a) if we want results with greater accuracy and high speed, we should probably turn into WEKA. (b) if we want to do parallel calculations too, the only tool that provides us this capability is FuzzyCLIPS, sacrificing little speed and accuracy. (c) With regards to GUI Ant-Miner, it works as well as WEKA in terms of accuracy, but it is slower. (d) About ACRES, it works well when we work with subsets of the variables, so that it produces a relatively small number or rules and covers almost all the instances of the test set. For our datasets, ACRES is not considered very reliable in the sense that we should work with subsets of variables, not all the variables of the dataset. The more variables we consider as a subset in ACRES, the slower it becomes.
|
16 |
Αναγνώριση βασικών κινήσεων του χεριού με χρήση ηλεκτρομυογραφήματος / Recognition of basic hand movements using electromyographyΣαψάνης, Χρήστος 13 October 2013 (has links)
Ο στόχος αυτής της εργασίας ήταν η αναγνώριση έξι βασικών κινήσεων του χεριού με χρήση δύο συστημάτων. Όντας θέμα διεπιστημονικού επιπέδου έγινε μελέτη της ανατομίας των μυών του πήχη, των βιοσημάτων, της μεθόδου της ηλεκτρομυογραφίας (ΗΜΓ) και μεθόδων αναγνώρισης προτύπων. Παράλληλα, το σήμα περιείχε αρκετό θόρυβο και έπρεπε να αναλυθεί, με χρήση του EMD, να εξαχθούν χαρακτηριστικά αλλά και να μειωθεί η διαστασιμότητά τους, με χρήση των RELIEF και PCA, για βελτίωση του ποσοστού επιτυχίας ταξινόμησης. Στο πρώτο μέρος γίνεται χρήση συστήματος ΗΜΓ της Delsys αρχικά σε ένα άτομο και στη συνέχεια σε έξι άτομα με το κατά μέσο όρο επιτυχημένης ταξινόμησης, για τις έξι αυτές κινήσεις, να αγγίζει ποσοστά άνω του 80%. Το δεύτερο μέρος περιλαμβάνει την κατασκευή αυτόνομου συστήματος ΗΜΓ με χρήση του Arduino μικροελεγκτή, αισθητήρων ΗΜΓ και ηλεκτροδίων, τα οποία είναι τοποθετημένα σε ένα ελαστικό γάντι. Τα αποτελέσματα ταξινόμησης σε αυτή την περίπτωση αγγίζουν το 75%. / The aim of this work was to identify six basic movements of the hand using two systems. Being an interdisciplinary topic, there has been conducted studying in the anatomy of forearm muscles, biosignals, the method of electromyography (EMG) and methods of pattern recognition. Moreover, the signal contained enough noise and had to be analyzed, using EMD, to extract features and to reduce its dimensionality, using RELIEF and PCA, to improve the success rate of classification. The first part uses an EMG system of Delsys initially for an individual and then for six people with the average successful classification, for these six movements at rates of over 80%. The second part involves the construction of an autonomous system EMG using an Arduino microcontroller, EMG sensors and electrodes, which are arranged in an elastic glove. Classification results in this case reached 75% of success.
|
17 |
Μοντελοποίηση μη-στάσιμων ταλαντώσεων μέσω συναρτησιακών μοντέλων TARMA: μέθοδοι εκτίμησης και ιδιότητες αυτώνΠουλημένος, Άγγελος 22 May 2008 (has links)
Το πρόβλημα που αντιμετωπίζει η διατριβή αφορά στη μοντελοποίηση μη-στασίμων τυχαίων ταλαντώσεων επί τη βάσει μετρήσεων του σήματος της ταλάντωσης, μέσω μοντέλων FS-TAR/TARMA.
Οι στόχοι της διατριβής περιλαμβάνουν την αποτίμηση της εφαρμοσιμότητας των μεθόδων FS-TAR/TARMA για την μοντελοποίηση και ανάλυση της ταλάντωσης χρονικά μεταβαλλόμενών κατασκευών, καθώς και τη σύγκρισή τους με εναλλακτικές παραμετρικές μεθόδους του πεδίου του χρόνου. Ιδιαίτερη βαρύτητα δίνεται και στην αντιμετώπιση θεμάτων που σχετίζονται με την εκτίμηση μοντέλων FS-ΤAR/TARMA, καθώς και στην θεωρητική ασυμπτωτική ανάλυση των ιδιοτήτων των εκτιμητριών που χρησιμοποιούνται.
Η διατριβή αρχικά παρουσιάζει μια συγκριτική ανασκόπηση της βιβλιογραφίας στο θέμα της μοντελοποίησης μη-στασίμων ταλαντώσεων μέσω παραμετρικών μεθόδων του πεδίου του χρόνου, η οποία και επιδεικνύει τα πλεονεκτήματα των μεθόδων FS-TAR/TARMA. Στη συνέχεια αντιμετωπίζεται μια σειρά προβλημάτων που εμφανίζονται κατά την εκτίμηση (των παραμέτρων) και την επιλογή της δομής του μοντέλου. Η αποτελεσματικότητα των μεθόδων FS-TAR/TARMA για την μοντελοποίηση και ανάλυση μη-στάσίμων ταλαντώσεων επιδεικνύεται και πειραματικά μέσω εφαρμογής στην οποία πραγματοποιείται επιτυχής εξαγωγή των δυναμικών χαρακτηριστικών μιας εργαστηριακής χρονικά μεταβαλλόμενης κατασκευής.
Στη συνέχεια, η διατριβή εστιάζει στην αναζήτηση ακριβέστερων εκτιμητριών, καθώς και στην ασυμπτωτική ανάλυση των ιδιοτήτων των εκτιμητριών «γενικών» (όχι αναγκαστικά περιοδικά μεταβαλλόμενων) μοντέλων FS-TAR/TARMA. Συγκεκριμένα, εξετάζονται οι περιπτώσεις των εκτιμητριών σταθμισμένων ελαχίστων τετραγώνων [Weighted Least Squares (WLS)], μέγιστης πιθανοφάνειας [Maximum Likelihood (ML)], καθώς και μια εκτιμήτρια πολλαπλών σταδίων [Multi Stage (MS)], η οποία αναπτύσσεται στην παρούσα διατριβή και είναι ασυμπτωτικά ισοδύναμη με την εκτιμήτρια ML ενώ ταυτόχρονα χαρακτηρίζεται από μειωμένη υπολογιστική πολυπλοκότητα. Στη διατριβή αποδεικνύεται η συνέπεια (consistency) των εκτιμητριών αυτών και εξάγεται η ασυμπτωτική κατανομή (asymptotic distribution) τους. Παράλληλα, αναπτύσσεται μια συνεπής εκτιμήτρια του ασυμπτωτικού πίνακα συνδιασποράς και μια μέθοδος για τον έλεγχο εγκυρότητας των μοντέλων FS-TAR/TARMA. Η ορθότητα των αποτελεσμάτων της ασυμπτωτικής ανάλυσης επιβεβαιώνεται μέσω μελετών Monte Carlo. / The thesis studies the problem of non-stationary random vibration modeling and analysis based on available measurements of the vibration signal via Functional Series Time-dependent AutoRegressive / AutoRegressive Moving Average (FS-TAR/ TARMA) models.
The aims of the thesis include the assessment of the applicability of FS-TAR/TARMA methods for the modeling and analysis of non-stationary random vibration, as well as their comparison with alternative time-domain parametric methods. In addition, significant attention has been paid to the FS-TAR/TARMA estimation problem and to the theoretical asymptotic analysis of the estimators.
A critical overview and comparison of time-domain, parametric, non-stationary random vibration modeling and analysis methods is firstly presented, where the high potential of FS-TAR/TARMA methods is demonstrated. In the following, a number of issues concerning the FS-TAR/TARMA model (parameter) estimation and model structure selection are considered. The effectiveness of the FS-TARMA methods for non-stationary random vibration modeling and analysis is experimentally demonstrated, through their application for the recovery of the dynamical characteristics of a time-varying bridge-like laboratory structure.
In the sequel, the thesis focuses on the asymptotic analysis of “general” (that is not necessarily periodically evolving) FS-TAR/TARMA estimators. In particular, the Weighted Least Squares (WLS) and Maximum Likelihood (ML) estimators are both investigated, while a Multi Stage (MS) estimator, that approximates the ML estimator at reduced complexity, is developed. The consistency of the considered estimators is established and their asymptotic distribution is extracted. Furthermore, a consistent estimator of the asymptotic covariance matrix is formulated and an FS-TAR/TARMA model validation method is proposed. The validity of the theoretical asymptotic analysis results is assessed through several Monte Carlo studies.
|
Page generated in 0.0323 seconds