1 |
微小管運動における運動方向および速度制御に関する研究中原, 佐 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19305号 / 工博第4102号 / 新制||工||1632(附属図書館) / 32307 / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 小寺 秀俊, 教授 田畑 修, 教授 中部 主敬 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
2 |
Microfabricação de um analisador em Fluxo-Batelada (Micro Flow-Batch) à base de polímero fotocurável Uretano-AcrilatoMonte Filho, Severino Sílvio do 17 March 2010 (has links)
Made available in DSpace on 2015-05-14T13:21:46Z (GMT). No. of bitstreams: 1
parte1.pdf: 2204692 bytes, checksum: df26e8eadaeacfb0702b39229f465ea2 (MD5)
Previous issue date: 2010-03-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work describes the construction of a new flow-batch analyzer (FB) in
micro scale (micro Flow-Batch-μFBA) using the technique of deep ultraviolet
photolithography with commercial resin based in urethane acrylate oligomers (UA).
The device was constructed from the union of two layers of pre-polymerized
resin of 3.4 mm thick each, thus forming a single structure. The main feature of the
new device is the small volume of its analysis chamber, which can be 100-200 μL,
allowing the homogenization of reagent solutions in a time of 2.s. In this sense, the
decrease in reagents consumption and hence generation of waste (ten times smaller
than a conventional FB), wich is in line with the requirements of green chemistry and
with the new position of the eco-efficiency. The system offers the following progress
in relation to micro fabrication with urethane acrylate resin: (i) depth control of the
channels during photolithography; (ii) axial mixer incorporated; (iii) LED - Light
emitting diode (530 nm) and detector (photodiode) coupled to the device body; The
depth control of the channels allows adjustment of the volume of the chamber and
the LED to the mixing chamber. The LED and detector connector pins is the
elements that makes the device fixed on its box. In this first assembly, system were
used in photometric determination of Fe (II) in pharmaceuticals. The model for the
calibration curve was validated by analysis of variance (ANOVA), and their analytical
results were compared with those obtained in batch by the reference method, the
application of paired t-test found no statistically significant differences at a confidence
level of 95%. / No presente trabalho é descrita a construção de um novo analisador Flow-
Batch (FB) em escala micro (micro Flow-Batch - μFBA) utilizando a técnica de
fotolitografia profunda no ultravioleta com resina comercial à base de oligômeros
uretano e acrilato (UA). O dispositivo foi construído a partir da união de duas
camadas da resina pré-polimerizada de 3,4 mm de espessura cada uma, formando
assim uma estrutura única. A característica principal do novo dispositivo é o pequeno
volume da câmara de análise, que pode ser de 100 a 200 μL, permitindo a
homogeneização das soluções reagentes em um tempo de 2.s. Nesse sentido, a
diminuição do consumo de reagentes e, conseqüentemente, de resíduos gerados
(dez vezes menor que um FB convencional), apontam na direção dos requisitos da
química verde e se alinham com a nova postura da ecoeficiência. O sistema
apresenta os seguintes avanços em relação à microfabricação com resina uretanoacrilato:
(i) controle da profundidade dos canais durante a fotolitografia; (ii) agitador
do tipo axial incorporado; (iii) LED emissor de luz (530nm) e detector (fotodiodo)
acoplados ao corpo do dispositivo. O controle da profundidade permitiu o ajuste do
volume da câmara e do LED à câmara de mistura. Os próprios pinos conectores do
LED e do detector foram utilizados como elementos de fixação da peça em sua
caixa. Nesta primeira montagem, o sistema foi empregado na determinação
fotométrica de Fe (II) em medicamentos. O modelo para a curva de calibração foi
validado através da Análise de Variância (ANOVA), e seus resultados analíticos
foram comparados com aqueles obtidos em análises de referência através da
aplicação do teste-t emparelhado, não apresentando diferenças estatísticas
significativas a um nível de confiança de 95%.
|
3 |
Single-Molecule Detection and Optical Scanning in Miniaturized FormatsMelin, Jonas January 2006 (has links)
<p>In later years polymer replication techniques have become a frequently employed fabrication method for microfluidic and micro-optical devices. This thesis describes applications and further developments of microstructures replicated in polymer materials. </p><p>A novel method for homogenous amplified single-molecule detection utilizing a microfluidic readout format is presented. The method enables enumeration of single biomolecules by transforming specific molecular recognition events at nanometer dimensions to micrometer-sized DNA macromolecules. This transformation process is mediated by target specific padlock probe ligation, followed by rolling circle amplification (RCA) resulting in the creation of one rolling circle product (RCP) for each recognized target. Throughout this transformation the discrete nature of the molecular population is preserved. By hybridizing a fluorescence-labeled DNA detection oligonucleotide to each repeated sequence of the RCP, a confined cluster of fluorophores is generated, which makes optical detection and quantification possible. Spectral multiplexing is also possible since the spectral profile of each RCP can be analyzed separately. The microfluidic data acquisition process is characterized in detail and conditions that allow for quantification limited only by Poisson sampling statistics is established. The molecular characteristics of RCPs in solution are also investigated.</p><p>Furthermore a novel thermoplastic microfluidic platform is described. The platform allows for observation of the microchannels using high magnification optics and also offers the possibility of on-chip cell culture and the integration of mechanical actuators.</p><p>A novel fabrication process for the integration of polymer micro-optical elements on silicon is presented. The process is used for fabrication of a micro-optical system consisting of a laser and a movable microlens making beam steering possible. Such a micro-scanning system could potentially be used for miniaturized biochemical analysis.</p>
|
4 |
Single-Molecule Detection and Optical Scanning in Miniaturized FormatsMelin, Jonas January 2006 (has links)
In later years polymer replication techniques have become a frequently employed fabrication method for microfluidic and micro-optical devices. This thesis describes applications and further developments of microstructures replicated in polymer materials. A novel method for homogenous amplified single-molecule detection utilizing a microfluidic readout format is presented. The method enables enumeration of single biomolecules by transforming specific molecular recognition events at nanometer dimensions to micrometer-sized DNA macromolecules. This transformation process is mediated by target specific padlock probe ligation, followed by rolling circle amplification (RCA) resulting in the creation of one rolling circle product (RCP) for each recognized target. Throughout this transformation the discrete nature of the molecular population is preserved. By hybridizing a fluorescence-labeled DNA detection oligonucleotide to each repeated sequence of the RCP, a confined cluster of fluorophores is generated, which makes optical detection and quantification possible. Spectral multiplexing is also possible since the spectral profile of each RCP can be analyzed separately. The microfluidic data acquisition process is characterized in detail and conditions that allow for quantification limited only by Poisson sampling statistics is established. The molecular characteristics of RCPs in solution are also investigated. Furthermore a novel thermoplastic microfluidic platform is described. The platform allows for observation of the microchannels using high magnification optics and also offers the possibility of on-chip cell culture and the integration of mechanical actuators. A novel fabrication process for the integration of polymer micro-optical elements on silicon is presented. The process is used for fabrication of a micro-optical system consisting of a laser and a movable microlens making beam steering possible. Such a micro-scanning system could potentially be used for miniaturized biochemical analysis.
|
5 |
Thin Film Microfluidic and Nanofluidic DevicesHamblin, Mark Noble 09 August 2010 (has links) (PDF)
Lab-on-a-chip devices, also known as micro total analysis systems (μTAS), are implementations of chemical analysis systems on microchips. These systems can be fabricated using standard thin film processing techniques. Microfluidic and nanofluidic channels are fabricated in this work through sacrificial etching. Microchannels are fabricated utilizing cores made from AZ3330 and SU8 photoresist. Multi-channel electroosmotic (EO) pumps are evaluated and the accompanying channel zeta potentials are calculated. Capillary flow is studied as an effective filling mechanism for nanochannels. Experimental departure from the Washburn model is considered, where capillary flow rates lie within 10% to 70% of theoretical values. Nanochannels are fabricated utilizing cores made from aluminum, germanium, and chromium. Nanochannels are made with 5 μm thick top layers of oxide to prevent dynamic channel deformation. Nanochannel separation schemes are considered, including Ogston sieving, entropic trapping, reptation, electrostatic sieving, and immutable trapping. Immutable trapping is studied through dual-segment nanochannels that capture analytes that are too large to pass from one channel into a second, smaller channel. Polymer nanoparticles, Herpes simplex virus type 1 capsids, and hepatitis B virus capsids are trapped and detected. The signal-to-noise ratio of the fluorescently-detected signal is shown to be greater than 3 for all analyte concentrations considered.
|
6 |
Electroanalytical devices with fluidic control using textile materials and methodsÖberg Månsson, Ingrid January 2020 (has links)
This thesis, written by Ingrid Öberg Månsson at KTH Royal Institute of Technology and entitled “Electroanalytical devices with fluidic control using textile materials and methods”, presents experimental studies on the development of textile based electronic devices and biosensors. One of the reasons why this is of interest is the growing demand for integrated smart products for wearable health monitoring or energy harvesting. To enable such products, new interdisciplinary fields arise combining traditional textile technology and electronics. Textile based devices have garnered much interest in recent years due to their innate ability to incorporate function directly into, for example, clothing or bandages by textile processes such as weaving, knitting or stitching. However, many modifications of yarns required for such applications are not available on an industrial scale. The major objective of this work has been to study how to achieve the performance necessary to create electronic textile devices by either coating yarns with conductive material or using commercially available conductive yarns that are functionalized to create sensing elements. Further, liquid transport within textile materials has been studied to be able to control the contact area between electrolyte and electrodes in electrochemical devices such as sensors and transistors. Yarns with specially designed cross-sections, traditionally used in sportswear to wick sweat away from the body and enhance evaporation, was used to transport electrolyte liquids to come in contact with yarn electrodes. The defined area of the junction where the fluidic yarn meets the conductive yarn was shown to increase stability of the measurements and the reproducibility between devices. The results presented in the two publications of this thesis as well as additional results presented in the thesis itself show the promising potential of using textile materials to integrate electronic and electrochemical functionality in our everyday life. This is shown by using basic textile materials and processing techniques to fabricate complex devices for various application areas such as sensors and diagnostics as well as electrical and energy harvesting components. / Denna avhandling, skriven av Ingrid Öberg Månsson vid Kungliga Tekniska Högskolan och titulerad ”Elektroanalytiska sensorer med vätskekontroll integrerad genom användande av textila material och metoder”, presenterar experimentella studier inom utvecklingen av textilbaserade elektroniska komponenter och biosensorer. Detta är av intresse på grund av den ökade efterfrågan på integrerade smarta produkter som till exempel bärbara sensorer för hälsoövervakning eller för att samla upp och konvertera energi till elektricitet. För att möjliggöra denna typ av produkter föds nya interdisciplinära fält där traditionell textilteknologi och elektronik möts. Textilbaserade enheter har väckt stort intresse under de senaste åren på grund av den naturliga förmågan att integrera funktion i till exempel kläder eller förband genom textila tillverkningsprocesser som väveri, stickning eller sömnad. Många modifikationer hos garner som krävs för att möjliggöra sådana tillämpningar är dock inte tillgängliga i större skala. Därför har det huvudsakliga syftet med denna studie varit att undersöka hur man kan uppnå den prestanda som krävs för att tillverka elektroniska textila komponenter, antingen genom att belägga garner med elektroniskt ledande material eller genom att använda kommersiellt tillgängliga ledande garner som sedan modifieras kemiskt för att skapa sensorer. Utöver detta har vätsketransport inom textila material studerats för att kunna styra och kontrollera kontaktytan mellan elektrolyt och elektroder i elektrokemiska enheter så som sensorer och transistorer. Garner med speciella tvärsnitt, som traditionellt använts i sportkläder för att transportera svett bort från kroppen och underlätta avdunstning, har använts för att transportera elektrolytvätska till elektroder av garn. Den definierade kontaktytan där det vätsketransporterade garnet korsar elektrodgarnet har visats öka stabiliteten av mätningen och reproducerbarheten mellan mätenheter. Resultaten som presenteras i de två artiklar som denna avhandling bygger på samt i avhandlingen själv visar på lovande potential för användandet av textila material för att integrera elektronisk och elektrokemisk funktionalitet i våra vardagsliv. Detta har uppnåtts genom att använda grundläggande textila material och tillverkningsprocesser för att tillverka komplexa enheter för olika tillämpningsområden så som sensorer för diagnostik samt elektroniska komponenter. / <p>QC 2020-08-21</p>
|
Page generated in 0.0255 seconds