1 |
Εκτίμηση και διαστήματα εμπιστοσύνης για ορισμένες παραμέτρους κλίμακοςΗλιόπουλος, Γεώργιος 23 October 2009 (has links)
- / -
|
2 |
Η διαδικασία φλυαρίας σε ασύρματα δίκτυαΚατσάνος, Κωνσταντίνος 06 December 2013 (has links)
Στις ημέρες μας, η εμφάνιση των ασύρματων δικτύων σε πολλές πτυχές της καθημερινότητας, είναι συνεχώς αυξανομενη. Το γεγονός αυτό, έχει ως συνέπεια να υπάρχει μεγάλη ερευνητική δραστηριότητα γύρω από τα ασύρματα δίκτυα, η οποία αφορά όχι μόνο το σχεδιασμό τους και την ανάπτυξη διάφορων πρωτοκόλλων, αλλά και άλλες εφαρμογές, όπως είναι για παράδειγμα η εκτίμηση παραμέτρων. Στα πλαίσια της εργασίας αυτής, μελετάται η ανάπτυξη των αλγορίθμων φλυαρίας, οι οποίοι αφορούν μία κατανεμημένη προσέγγιση του προβλήματος της εκτίμησης παραμέτρων σε ένα δίκτυο. Πιο συγκεκριμένα, σε αντίθεση με τις κλασσικές μεθόδους στις οποίες αναλαμβάνει ένας κεντρικός κόμβος με μεγάλη υπολογιστική ισχύ να λύσει το πρόβλημα της εκτίμησης της παραμέτρου ενδιαφέροντος, με τους αλγόριθμους φλυαρίας αναιρείται η έννοια του κεντρικού κόμβου και η εκτίμηση στηρίζεται στη συνεχή ανταλλαγή πληροφοριών μεταξύ των κόμβων του δικτύου. Με τις προσομοιώσεις που έγιναν στα πλαίσια αυτής της εργασίας, αποδεικνύεται ότι οι εν λόγω αλγόριθμοι εξασφαλίζουν επιτυχημένη προσέγγιση του προβλήματος που καλούνται να επιλύσουν παρότι οι αλγόριθμοι φλυαρίας στηρίζονται σε υποβέλτιστες τεχνικές εκτίμησης παραμέτρων οι οποίες βασίζονται σε αναδρομικούς προσαρμοστικούς αλγορίθμους. Τέλος, αντιμετωπίζεται το πρόβλημα της εκτίμησης της θέσης ενός στόχου που κινείται στην περιοχή ενός δικτύου με βάση τη διαδικασία της φλυαρίας. / In recent years, the emergence of wireless networks in many aspects of daily life, is increasingly growing. This fact has as consequence a strong research activity around various types of wireless networks, not only in the design and development of various protocols, but also in other applications such as parameter estimation. In this thesis, we study the development of gossip algorithms that are related to a distributed approach to the problem of parameter estimation in a network. More specifically, in contrast with classical methods that assume a central node with high computational power to solve the problem of estimation of the parameter of interest, the use of gossip algorithms negates this concept and the estimation process is based on continuing exchange of information between network nodes. Additionally, despite the fact that gossip algorithms belong to suboptimal parameter estimation techniques, that are based on recursive adaptive algorithms, the simulation results presented show that these algorithms ensure successful approach to the problem they have to solve. Finally, the process of gossiping deals with the problem of estimating the position of a moving target in the region of a wireless network.
|
3 |
Αναγνώριση επιθέσεων άρνησης εξυπηρέτησηςΓαβρίλης, Δημήτρης 15 February 2008 (has links)
Στη Διδακτορική Διατριβή μελετώνται 3 κατηγορίες επιθέσεων άρνησης εξυπηρέτησης (Denial-of-Service). Η πρώτη κατηγορία αφορά επιθέσεις τύπου SYN Flood, μια επίθεση που πραγματοποιείται σε χαμηλό επίπεδο και αποτελεί την πιο διαδεδομένη ίσως κατηγορία. Για την αναγνώριση των επιθέσεων αυτών εξήχθησαν 9 στατιστικές παράμετροι οι οποίες τροφοδότησαν τους εξής ταξινομητές: ένα νευρωνικό δίκτυο ακτινικών συναρτήσεων, ένα ταξινομητή κ-κοντινότερων γειτόνων και ένα εξελικτικό νευρωνικό δίκτυο. Ιδιαίτερη σημασία στο σύστημα αναγνώρισης έχουν οι παράμετροι που χρησιμοποιήθηκαν. Για την κατασκευή και επιλογή των παραμέτρων αυτών, προτάθηκε μια νέα τεχνική η οποία χρησιμοποιεί ένα γενετικό αλγόριθμο και μια γραμματική ελεύθερης σύνταξης για να κατασκευάζει νέα σύνολα παραμέτρων από υπάρχοντα σύνολα πρωτογενών χαρακτηριστικών. Στη δεύτερη κατηγορία επιθέσεων, μελετήθηκαν επιθέσεις άρνησης εξυπηρέτησης στην υπηρεσία του παγκόσμιου ιστού (www). Για την αντιμετώπιση των επιθέσεων αυτών προτάθηκε η χρήση υπερσυνδέσμων-παγίδων οι οποίοι τοποθετούνται στον ιστοχώρο και λειτουργούν σαν νάρκες σε ναρκοπέδιο. Οι υπερσύνδεσμοι-παγίδες δεν περιέχουν καμία σημασιολογική πληροφορία και άρα είναι αόρατοι στους πραγματικούς χρήστες ενώ είναι ορατοί στις μηχανές που πραγματοποιούν τις επιθέσεις. Στην τελευταία κατηγορία επιθέσεων, τα μηνύματα ηλεκτρονικού ταχυδρομείου spam, προτάθηκε μια μέθοδος κατασκευής ενός πολύ μικρού αριθμού παραμέτρων και χρησιμοποιήθηκαν για πρώτη φορά νευρωνικά δίκτυα για την αναγνώριση τους. / The dissertation analyzes 3 categories of denial-of-service attacks. The first category concerns SYN Flood attacks, a low level attack which is the most common. For the detection of this type of attacks 9 features were proposed which acted as inputs for the following classifiers: a radial basis function neural network, a k-nearest neighbor classifier and an evolutionary neural network. A crucial part of the proposed system is the parameters that act as inputs for the classifiers. For the selection and construction of those features a new method was proposed that automatically selects constructs new feature sets from a predefined set of primitive characteristics. This new method uses a genetic algorithm and a context-free grammar in order to find the optimal feature set. In the second category, denial-of-service attacks on the World Wide Web service were studied. For the detection of those attacks, the use of decoy-hyperlinks was proposed. Decoy hyperlinks, are hyperlinks that contain no semantic information and thus are invisible to normal users but are transparent to the programs that perform the attacks. The decoys act like mines on a minefield and are placed optimally on the web site so that the detection probability is maximized. In the last type of attack, the email spam problem, a new method was proposed for the construction of a very small number of features which are used to feed a neural network that for the first time is used to detect such attacks.
|
4 |
Μέθοδος επεξεργασίας σήματος για τρισδιάστατη ηχητική αναπαραγωγήΠίππος, Γεώργιος 09 October 2014 (has links)
Στα πλαίσια της διπλωματικής αυτής, έγινε ανάλυση και υλοποίησης της κωδικοποίησης αμφοιωτικών παραμέτρων (BCC-Binaural Cue Coding). Οι αλγόριθμοι της κωδικοποίησης BCC και γενικά όλες οι συναρτήσεις που χρησιμοποιήθηκαν έγιναν στο περιβάλλον της MATLAB. Για τη διαδικασία και για τον έλεγχο των αλγορίθμων έγινε χρήση στερεοφωνικών σημάτων τα οποία κωδικοποιήθηκαν σε μονοφωνικά. Στόχος της κωδικοποίησης ήταν να επιτευχθεί γρήγορη μίξη και εξαγωγή των παραμέτρων του στερεοφωνικού σήματος και ταυτόχρονα όσο το δυνατό πιο πειστική επαναδημιουργία του σήματος. Για αυτό τον λόγο στην προσπάθεια δημιουργίας προγράμματος με γρήγορη απόκριση, η κωδικοποίηση έγινε, τόσο στο πεδίο του χρόνου όσο και στο πεδίο της συχνότητας. / --
|
5 |
Αρνητική διωνυμική κατανομή και εκτίμηση των παραμέτρων τηςΔίκαρος, Ανδρέας 29 December 2010 (has links)
Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής θεωρίας Αποφάσεων και ειδικότερα στη μελέτη της αρνητικής διωνυμικής κατανομής καθώς επίσης και στην εκτίμηση των παραμέτρων της.
Στο Κεφάλαιο 1 παρουσιάζονται κάποιοι χρήσιμοι, για την πορεία της μελέτης μας, ορισμοί και θεωρήματα.
Στο Κεφάλαιο 2 μελετάται το μοντέλο της αρνητικής διωνυμικής κατανομής, δίνονται τα χαρακτηριστικά μεγέθη αυτής και παρουσιάζονται οι διαφορετικές παραμετρικοποιήσεις της.
Στο Κεφάλαιο 3, εξετάζεται το πρόβλημα εκτίμησης των παραμέτρων της αρνητικής διωνυμικής κατανομής και πιο ειδικά η εκτίμηση για τις διάφορες παραμετρικοποιήσης της. Για περισσότερη ανάλυση χρησιμοποιούνται η εκτίμηση μέγιστης πιθανοφάνειας, η εκτίμηση με τη μέθοδο των ροπών και πιο εξειδικευμένες υπολογιστικές μέθοδοι εκτίμησης.
Στο Κεφάλαιο 4, και για το ίδιο πρόβλημα εκτίμησης που πραγματεύεται το προηγούμενο κεφάλαιο, επιλέγεται ο βέλτιστος εκτιμητής των παραμέτρων της αρνητικής διωνυμικής κατανομής και παρουσιάζεται ένα παράδειγμα για την κατανόηση των μεθόδων εκτίμησης. / The master thesis we are going to introduce takes place in the region of Statistical Decision Theory and particularly in studying the Negative Binomial Distribution and the estimation of its parameters.
In Chapter 1 some useful definitions and theorems are presented.
In Chapter 2 the model of negative binomial distribution is studied and its different parameterizations are discussed.
In Chapter 3 we examine the problem of estimating the parameters of our model and for its parameterizations. In particular we give the method of Maximum Likelihood Estimation, the Method of Moments and more specified Estimation Methods.
In Chapter 4 and for the same estimation problem, as in previous chapter, it’s been chosen the best estimator of the parameters in our model and it’s been derived an example for the better understanding of the above methods.
|
6 |
Distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks / Κατανεμημένες τεχνικές επεξεργασίας για εκτίμηση παραμέτρων και αποδοτική συλλογή δεδομένων σε ασύρματα δίκτυα επικοινωνιών και αισθητήρωνBogdanovic, Nikola 07 May 2015 (has links)
This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks.
With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general problem where the nodes of the network have overlapped but different estimation interests.
Motivated by this fact, this dissertation states a new Node-Specific Parameter Estimation (NSPE) formulation where the nodes are interested in estimating parameters of local, common and/or global interest. We consider a setting where the NSPE interests are partially overlapping, while the non-overlapping parts can be arbitrarily different. This setting can model several applications, e.g., cooperative spectrum sensing in cognitive radio networks, power system state estimation in smart grids etc. Unsurprisingly, the effectiveness of any distributed adaptive implementation is dependent on the ways cooperation is established at the network level, as well as the processing strategies considered at the node level.
At the network level, this dissertation is concerned with the incremental and diffusion cooperation schemes in the NSPE settings. Under the incremental mode, each node communicates with only one neighbor, and the data are processed in a cyclic manner throughout the network at each time instant. On the other hand, in the diffusion mode at each time step each node of the network cooperates with a set of neighboring nodes.
Based on Least-Mean Squares (LMS) and Recursive Least-Squares (RLS) learning rules employed at the node level, we derive novel distributed estimation algorithms that undertake distinct but coupled optimization processes in order to obtain adaptive solutions of the considered NSPE setting.
The detailed analyses of the mean convergence and the steady-state mean-square performance have been provided. Finally, different performance gains have been illustrated in the context of cooperative spectrum sensing in cognitive radio networks. Another fundamental problem that has been considered in this dissertation is the data-gathering problem, sometimes also named as the sensor reachback, that arises in Wireless Sensor Networks (WSN). In particular, the problem is related to the transmission of the acquired observations to a data-collecting node, often termed to as sink node, which has increased processing capabilities and more available power as compared to the other nodes. Here, we focus on WSNs deployed for structural health monitoring.
In general, there are several difficulties in the sensor reachback problem arising in such a network. Firstly, the amount of data generated by the sensor nodes may be immense, due to the fact that structural monitoring applications need to transfer relatively large amounts of dynamic response measurement data. Furthermore, the assumption that all sensors have direct, line-of-sight link to the sink does not hold in the case of these structures.
To reduce the amount of data required to be transmitted to the sink node, the correlation among measurements of neighboring nodes can be exploited. A possible approach to exploit spatial data correlation is Distributed Source Coding (DSC). A DSC technique may achieve lossless compression of multiple correlated sensor outputs without establishing any communication links between the nodes. Other approaches employ lossy techniques by taking advantage of the temporal correlations in the data and/or suitable stochastic modeling of the underlying processes. In this dissertation, we present a channel-aware lossless extension of sequential decoding based on cooperation between the nodes. Next, we also present a cooperative communication protocol based on adaptive spatio-temporal prediction. As a more practical approach, it allows a lossy reconstruction of transmitted data, while offering considerable energy savings in terms of transmissions toward the sink. / Η παρούσα διατριβή ασχολείται με τεχνικές κατανεμημένης επεξεργασίας για εκτίμηση παραμέτρων και για την αποδοτική συλλογή δεδομένων σε ασύρματα δίκτυα επικοινωνιών και αισθητήρων.
Το πρόβλημα της εκτίμησης συνίσταται στην εξαγωγή ενός συνόλου παραμέτρων από χρονικές και χωρικές θορυβώδεις μετρήσεις που συλλέγονται από διαφορετικούς κόμβους οι οποίοι παρακολουθούν μια περιοχή ή ένα πεδίο. Ο στόχος είναι να εξαχθεί μια εκτίμηση που θα είναι τόσο ακριβής όσο αυτή που θα πετυχαίναμε εάν κάθε κόμβος είχε πρόσβαση στην πληροφορία που έχει το σύνολο του δικτύου. Στο πρόσφατο σχετικά παρελθόν έγιναν διάφορες προσπάθειες που είχαν ως σκοπό την ανάπτυξη ενεργειακά αποδοτικών και χαμηλής πολυπλοκότητας κατανεμημένων υλοποίησεων του εκτιμητή. Έτσι, υπάρχουν πλέον στη βιβλιογραφία διάφορες ενδιαφέρουσες τεχνικές βελτιστοποίησης που οδηγούν σε γραμμικούς, κυρίως, εκτιμητές. Μέχρι τώρα, οι περισσότερες εργασίες θεωρούσαν ότι οι κόμβοι ενδιαφέρονται για την εκτίμηση ενός κοινού διανύσματος παραμέτρων, το οποίο είναι ίδιο για όλο το δίκτυο. Αυτό το σενάριο μπορεί να θεωρηθεί ως μια ειδική περίπτωση ενός γενικότερου προβλήματος, όπου οι κόμβοι του δικτύου έχουν επικαλυπτόμενα αλλά διαφορετικά ενδιαφέροντα εκτίμησης.
Παρακινημένη από αυτό το γεγονός, αυτή η Διατριβή ορίζει ένα νέο πλαίσιο της Κόμβο-Ειδικής Εκτίμησης Παραμέτρων (ΚΕΕΠ), όπου οι κόμβοι ενδιαφέρονται για την εκτίμηση των παραμέτρων τοπικού ενδιαφέροντος, των παραμέτρων που είναι κοινές σε ένα υποσύνολο των κόμβων ή/και των παραμέτρων που είναι κοινές σε όλο το δίκτυο. Θεωρούμε ένα περιβάλλον όπου η ΚΕΕΠ αναφέρεται σε ενδιαφέροντα που αλληλεπικαλύπτονται εν μέρει, ενώ τα μη επικαλυπτόμενα τμήματα μπορούν να είναι αυθαίρετα διαφορετικά. Αυτό το πλαίσιο μπορεί να μοντελοποιήσει διάφορες εφαρμογές, π.χ., συνεργατική ανίχνευση φάσματος σε γνωστικά δίκτυα ραδιοεπικοινωνιών, εκτίμηση της κατάστασης ενός δικτύου μεταφοράς ενέργειας κλπ. Όπως αναμένεται, η αποτελεσματικότητα της οποιασδήποτε κατανεμημένης προσαρμοστικής τεχνικής εξαρτάται και από τον συγκεκριμένο τρόπο με τον οποίο πραγματοποιείται η συνεργασία σε επίπεδο δικτύου, καθώς και από τις στρατηγικές επεξεργασίας που χρησιμοποιούνται σε επίπεδο κόμβου. Σε επίπεδο δικτύου, αυτή η διατριβή ασχολείται με τον incremental (κυκλικά εξελισσόμενο) και με τον diffusion (διαχεόμενο) τρόπο συνεργασίας στο πλαίσιο της ΚΕΕΠ. Στον incremental τρόπο, κάθε κόμβος επικοινωνεί μόνο με ένα γείτονα, και τα δεδομένα από το δίκτυο υποβάλλονται σε επεξεργασία με ένα κυκλικό τρόπο σε κάθε χρονική στιγμή. Από την άλλη πλευρά, στον diffusion τρόπο σε κάθε χρονική στιγμή κάθε κόμβος του δικτύου συνεργάζεται με ένα σύνολο γειτονικών κόμβων. Με βάση τους αλγορίθμους Ελαχίστων Μέσων Τετραγώνων (ΕΜΤ) και Αναδρομικών Ελαχίστων Τετραγώνων (ΑΕΤ) οι οποίοι χρησιμοποιούνται ως κανόνες μάθησης σε επίπεδο κόμβου, αναπτύσσουμε νέους κατανεμημένους αλγόριθμους για την εκτίμηση οι οποίοι αναλαμβάνουν ευδιακριτές, αλλά συνδεδεμένες διαδικασίες βελτιστοποίησης, προκειμένου να αποκτηθούν οι προσαρμοστικές λύσεις της εξεταζόμενης ΚΕΕΠ. Οι λεπτομερείς αναλύσεις για τη σύγκλιση ως προς τη μέση τιμή και για τη μέση τετραγωνική απόδοση σταθερής κατάστασης έχουν επίσης εξαχθεί στο πλαίσιο αυτής της Διατριβής. Τέλος, όπως αποδεικνύεται, η εφαρμογή των προτεινόμενων τεχνικών εκτίμησης στο πλαίσιο της συνεργατικής ανίχνευσης φάσματος σε γνωστικές ραδιοεπικοινωνίες, οδηγεί σε αισθητά κέρδη απόδοσης.
Ένα άλλο βασικό πρόβλημα που έχει μελετηθεί στην παρούσα εργασία είναι το πρόβλημα συλλογής δεδομένων, επίσης γνωστό ως sensor reachback, το οποίο προκύπτει σε ασύρματα δίκτυα αισθητήρων (ΑΔΑ). Πιο συγκεκριμένα, το πρόβλημα σχετίζεται με την μετάδοση των λαμβανόμενων μετρήσεων σε έναν κόμβο συλλογής δεδομένων, που ονομάζεται sink node, ο οποίος έχει αυξημένες δυνατότητες επεξεργασίας και περισσότερη διαθέσιμη ισχύ σε σύγκριση με τους άλλους κόμβους. Εδώ, έχουμε επικεντρωθεί σε ΑΔΑ που έχουν αναπτυχθεί για την παρακολούθηση της υγείας κατασκευών. Σε γενικές γραμμές, σε ένα τέτοιο δίκτυο προκύπτουν πολλές δυσκολίες σε ότι αφορά το sensor reachback προβλήμα. Πρώτον, η ποσότητα των δεδομένων που παράγονται από τους αισθητήρες μπορεί να είναι τεράστια, γεγονός που οφείλεται στο ότι για την παρακολούθηση της υγείας κατασκευών είναι απαραίτητο να μεταφερθούν σχετικά μεγάλες ποσότητες μετρήσεων δυναμικής απόκρισης. Επιπλέον, η υπόθεση ότι όλοι οι αισθητήρες έχουν απευθείας μονοπάτι μετάδοσης, με άλλα λόγια ότι βρίσκονται σε οπτική επαφή με τον sink node, δεν ισχύει στην περίπτωση των δομών αυτών.
Για να μειωθεί η ποσότητα των δεδομένων που απαιτούνται για να μεταδοθούν στον sink node, αξιοποιείται η συσχέτιση μεταξύ των μετρήσεων των γειτονικών κόμβων. Μία πιθανή προσέγγιση για την αξιοποίηση της χωρικής συσχέτισης μεταξύ δεδομένων σχετίζεται με την Κατανεμημένη Κωδικοποίηση Πηγής (ΚΚΠ). Η τεχνική ΚΚΠ επιτυγχάνει μη απωλεστική συμπίεση των πολλαπλών συσχετιζόμενων μετρήσεων των κόμβων χωρίς να απαιτεί την οποιαδήποτε επικοινωνία μεταξύ των κόμβων. Άλλες προσεγγίσεις χρησιμοποιούν απωλεστικές τεχνικές συμπίεσης εκμεταλλευόμενες τις χρονικές συσχετίσεις στα δεδομένα ή / και κάνοντας μία κατάλληλη στοχαστική μοντελοποίηση των σχετικών διαδικασιών. Σε αυτή τη Διατριβή, παρουσιάζουμε μία επέκταση της διαδοχικής αποκωδικοποίησης χωρίς απώλειες λαμβάνοντας υπόψιν το κανάλι και βασιζόμενοι σε κατάλληλα σχεδιασμένη συνεργασία μεταξύ των κόμβων. Επιπρόσθετα, παρουσιάζουμε ενα συνεργατικό πρωτόκολλο επικοινωνίας που στηρίζεται σε προσαρμοστική χωρο-χρονική πρόβλεψη. Ως μια πιο πρακτική προσέγγιση, το πρωτόκολλο επιτρέπει απώλειες στην ανακατασκευή των μεταδιδόμενων δεδομένων, ενώ προσφέρει σημαντική εξοικονόμηση ενέργειας μειώνοντας των αριθμό των απαιτούμενων μεταδόσεων προς τον sink node.
|
7 |
Μη καταστροφικός έλεγχος μεταλλικών κατασκευών με ψηφιακή επεξεργασία σημάτων ακουστικής εκπομπής / Non destructive testing of metal constructions with digital processing of acoustic emission signalsΚαππάτος, Βασίλειος 26 October 2007 (has links)
Στα πλαίσια της διατριβής, πραγματοποιήθηκε μελέτη και ανάλυση σημάτων πηγών ακουστικής εκπομπής, προτάθηκαν νέες ολοκληρωμένες μεθοδολογίες βασισμένες σε συμβατικές αλλά και προχωρημένες τεχνικές επεξεργασίας και ανάλυσης δεδομένων για την εξαγωγή εκείνων των χαρακτηριστικών που διαχωρίζουν τα σήματα ακουστικής εκπομπής από τον περιβάλλοντα θόρυβο. Εξετάσθηκαν ποια χαρακτηριστικά γνωρίσματα (παράμετροι) περιέχουν σημαντικό τμήμα της “πληροφορίας” έτσι ώστε στη συνέχεια χρησιμοποιώντας προχωρημένες μεθόδους αναγνώρισης προτύπων να επιτευχθεί ανίχνευση και χαρακτηρισμός ρωγμοειδών αστοχιών σε θορυβώδεις συνθήκες αλλά και σε σύνθετες κατασκευές. Συνοπτικά στην παρούσα διατριβή προτάθηκε και αξιολογήθηκε μια νέα μέθοδος για την εκτίμηση της βέλτιστης τοποθέτησης αισθητήρων. Προτάθηκαν δύο μέθοδοι για τον εντοπισμό θέσης πηγής ακουστικής εκπομπής. Πραγματοποιήθηκε για πρώτη φορά εξαγωγή ενενήντα παραμέτρων, εκ’ των οποίων οι εξήντα επτά προσδιορίστηκαν μετά από επεξεργασία του σήματος στο πεδίο του χρόνου ενώ οι υπόλοιπες είκοσι τρεις με επεξεργασία του σήματος στο πεδίο της συχνότητας. H μείωση του αριθμού των παραμέτρων, χωρίς όμως να μειώνεται ταυτόχρονα και η αξιοπιστία του ταξινομητή, αποτελεί ένα μεγάλος μέρος έρευνας που πραγματοποιήθηκε στα πλαίσια εκπόνησης της παρούσας διατριβής. Προτάθηκαν και αξιολογήθηκαν τέσσερις μέθοδοι επιλογής παραμέτρων. Για πρώτη φορά κατασκευάστηκαν και αξιολογήθηκαν ολοκληρωμένα συστήματα ανίχνευσης αστοχιών τα οποία έχουν την δυνατότητα να ανιχνεύουν τη δημιουργία ρωγμών λόγω καταπόνησης σε καιρικές συνθήκες βροχής. Στο τελευταίο μέρος της διατριβής κατασκευάστηκε και αξιολογήθηκε ένα καινοτόμο σύστημα χαρακτηρισμού ρωγμοειδών γεγονότων για τις ενισχύσεις πλοίων, υπό προσομοιωμένες συνθήκες λειτουργίας του πλοίου. / The present PhD thesis dealt with the following subjects: best sensors position, source location, features extraction and features selection, crack detection on raining conditions, crack characterization in ship structures.
A new method, for the estimation of the best sensors position that used for accurate acoustic emission source location on empty spherical surfaces, is presented. Two acoustic emission source location methods are presented and evaluated. In this thesis, an extensive set of ninety features (forty-one novel features) are extracted from acoustic emission signals, sixty-seven in the time domain and twenty-three by processing the signal in the frequency domain. The features are estimated for two time-frames the first has 1msec duration (typically the signal does not contain all the reflections from the material edges) and the second has 32msec of the normalized signal, which is not separated by its reflections, in small structures. To achieve robust performance both in accuracy and computational complexity of any classification method, it is necessary to pick up the most relevant features. Four features selection methods are proposed and evaluated. In outside constructions (e.g bridges, tanks, ships etc) real-life noises reduce significantly the capability of location and characterization acoustic emission sources. Among the most important types of noise is the rain, producing signal similar to crack. A completed system of detection crack on condition of rain is estimated. An efficient system for automatic and real-time characterization of crack events using a robust set of features to monitor crack events in ship structures is presented. In normal operation of ship, real-life noises (e.g engines, sea waves, weather conditions etc) reduce significantly the capability of location and characterization of crack events.
|
8 |
Οικολογική διερεύνηση των υγρότοπων Δέλτα Αχελώου - Στροφυλιάς - Βασιλικής - Κρυονερίου (Δ. Ελλάδα) : συσχετίσεις περιβαλλοντικών παραμέτρων και χλωρίδας - βλάστησηςΒίτσου-Λαμπράκη, Αγγελική 03 July 2009 (has links)
Στη διατριβή αυτή γίνεται η οικολογική διερεύνηση των υγροτόπων Δέλτα Αχελώου, περιοχών Στροφυλιάς, Βασιλικής και Κρυονερίου και μελετώνται οι συσχετίσεις των περιβαλλοντικών παραμέτρων με χλωρίδα και βλάστηση.
Τόσο για την έρευνα της χλωρίδας, όσο και για τον προσδιορισμό των μονάδων βλάστησης πραγματοποιήθηκε ικανός αριθμός δειγματοληψιών σε αντιπροσωπευτικές θέσεις με αντίστοιχες ζώνες βλάστησης για τις περιοχές του Αχελώου, της Στροφυλιάς και της Βαράσοβας (Βασιλική - Κρυονέρι).
Σε κάθε θέση, εκτός απο τις φυτοληψίες, λαμβάνονταν δείγματα εδάφους και νερού, όπου αυτό ήταν εφικτό, για να γίνει εργαστηριακή επεξεργασία.Τα εδαφικά δείγματα αναλύθηκαν εργαστηριακά και προσδιορίστηκαν οι παράμετροι: κοκκομετρική σύσταση του εδάφους (%), υγρασία του εδάφους (%), pH και αγωγιμότητα, CaCO3 (%), οργανική ουσία ( %), ολικό Ν (mg/100gr, μέθοδος Kjehldahl), P (mgr/kgr, μέθοδος Olsen), K (meq/100gr, in ammonium acetate pH 7.0).Στα δείγματα νερού προσδιορίστηκαν επι πλέον εργαστηριακά οι παράμετροι: Κ, Νa, Ca, Μg, Cl , ΗC031-, Ν031-,, Ν021-, ΝΗ41+ και S042,pH, θερμοκρασία, δυναμικό οξειδοαναγωγής, αλκαλικότητα, CO2, αγωγιμότητα.Από τη στατιστική επεξεργασία των παραμέτρων προέκυψαν οι στατιστικά σημαντικοί και συσχετίστηκαν με τις ενότητες και υποενότητες βλάστησης.Αναγνωρίστηκαν 405 taxa και στις τέσσερεις περιοχές μελέτης.Από την ανάλυση της βλάστησης, αναγνωρίστηκαν πέντε (5) ενότητες και ένδεκα (11) υποενότητες βλάστησης.Οι σύγχρονες μέθοδοι στατιστικής επεξεργασίας που χρησιμοποιήθηκαν ανέδειξαν τους περιβαλλοντικούς παράγοντες που διαφοροποιούν τις υποενότητς βλάστησης. Ειδικότερα, για το έδαφος είναι: τα θρεπτικά, η αγωγιμότητα και η αλκαλικότητας, ενώ για το νερό τις παρόχθιες υποενότητες διαφοροποιεί το pH. / In the present study, wetlands of the areas of Acheloos river Delta, Strofilia, Vasiliki and Krioneri are studied from the ecological point of view and their flora and vegetation are correlated with the main abiotic factors of soil and water. For the survey of the flora and the vegetations units’ identification a sufficient number of samplings were made in representative sites of relevant vegetation units of the studied areas. In every sampling site, samples of soil and water - where it was possible - have been also taken, for laboratory processing. The identified parameters for soil samples were: soil particles size (%), soil moisture (%), pH and conductivity, CaCO3 (%,), organic matter (%), total N (mg/100gr, Kjehldahl method), P (mgr / kgr, Olsen method), K (meq/100gr, in ammonium acetate pH 7.0). For water samples parameters identified were: Κ, Νa, Ca, Μg, Cl , ΗC031-, Ν031-,, Ν021-, ΝΗ41+ και S042-pH, temperature, redox, alkalinity, CO2 and conductivity.From the parameters statistical analysis those statistically significant were obtained and then correlated with the determined vegetation units and subunits.405 taxa were identified from the four study areas.From the vegetations analysis five (5) units and eleven (11) subunits were distinguished.Modern methods of statistical treatment used highlighted the environmental factors that differentiate the Subunits of the vegetation. In particular, for the soil these factors are: nutrients, conductivity and alkalinity, while for the water the differentiating factor is pH.
|
9 |
Υπολογισμός παραμέτρων κίνησης οφθαλμού μέσω κάμερας με χρήση τεχνικών επεξεργασίας εικόνας / Calculation of eye movement pParameters using a CMOS camera and image processing techniquesΜαρκάκη, Βασιλική 29 June 2007 (has links)
Σκοπός της παρούσας Διπλωματικής Εργασίας είναι η ανάπτυξη και εφαρμογή τεχνικών ψηφιακής επεξεργασίας εικόνων για τον εντοπισμό του οφθαλμού και τον υπολογισμό συγκεκριμένων παραμέτρων που συνδέονται με την κατάσταση του χρήστη. Συγκεκριμένα, χρησιμοποιήθηκε ένα ολοκληρωμένο Σύστημα Εντοπισμού Οφθαλμού που περιλαμβάνει τα υποσυστήματα της CMOS κάμερα, της μεταφοράς δεδομένων – εικόνων, της ψηφιοποίησης των δεδομένων, και τέλος το υποσύστημα της επεξεργασίας εικόνων οφθαλμού και του υπολογισμού παραμέτρων. Στα πλαίσια του τελευταίου αυτού υποσυστήματος αναπτύχθηκαν δύο μεθοδολογίες που βασίστηκαν στην εφαρμογή αλγορίθμων ψηφιακής επεξεργασίας εικόνων. Η πρώτη μεθοδολογία βασίστηκε στον υπολογισμό της μέσης φωτεινότητας για την άνω και την κάτω περιοχή του οφθαλμού. Η χρονική μεταβολή των δύο τιμών της φωτεινότητας χρησιμοποιήθηκε για την εξαγωγή πληροφοριών για την κατάσταση του οφθαλμού (ανοιχτός ή κλειστός). Η δεύτερη μεθοδολογία στηρίχτηκε σε ένα συνδυασμό τεχνικών ψηφιακής επεξεργασίας εικόνων. Η επεξεργασία κάθε εικόνας της ακολουθίας video περιλαμβάνει τέσσερα βασικά βήματα: (α) ευθυγράμμιση της εικόνας σε σχέση με ένα κοινό σύστημα αναφοράς, (β) εφαρμογή δύο φίλτρων για την ανίχνευση των κορυφών και των κοιλάδων της εικόνας, (γ) σύντηξη των δύο φιλτραρισμένων εικόνων που προκύπτουν και (δ) μετατροπή της εικόνας σύντηξης σε δυαδική με εφαρμογή κατάλληλου κατωφλίου. Η καταμέτρηση των λευκών εικονοστοιχείων της δυαδικής εικόνας στην περιοχή του οφθαλμού καθορίζει την κατάσταση του οφθαλμού (ανοικτός ή κλειστός). Τέλος, και μέσω του λογισμικού, υπολογίζονται οι σχετικές παράμετροι της κατάστασης του οφθαλμού όπως ο αριθμός ανοιγο-κλεισίματος οφθαλμού, η διάρκεια κάθε ανοιγο-κλεισίματος οφθαλμού και οι χρονικές αποστάσεις μεταξύ των προσδιορισμένων ανοιγο-κλεισιμάτων σε μια αλληλουχία συλλεγμένων εικόνων. / The scope of the thesis was the development and application of digital image processing techniques in order to detect human eye in video sequences and determine parameters related to the user’s state. Specifically, an integrated Eye-Tracking System was used in order to obtain the necessary image frames for further processing. The System consists of four modules, the CMOS camera module, the transfer module, the digitization module and the software module. The software module was based on the application of image processing techniques to detect the eye and calculate specific parameters. Two image processing techniques were developed and tested throughout this thesis. The first method was based on the calculations of the mean brightness of the upper and lower eye region for each frame of the video sequence. The temporal variation of this mean value provided useful information for the eye state (open/closed). The second method was based on a combination of various image processing techniques. The processing of each video frame comprises of four basic steps: a) registration of the image in relation to the first frame of the video sequence, b) filtering in order to detect the peaks and valleys of the image being processed, c) fusion of the filtered images, and d) binarization of the fused image by thresholding. The calculation of the number of white pixels in the eye region of the binary image indicates the state of the eye (open/closed) and allows the determination of the blink parameters related to the user’s state (vigilance/somnolence). The parameters being measured throughout this thesis were the number of eye blinks, the blink duration and the blink interval.
|
10 |
Αναγνώριση συναισθημάτων από ομιλία με χρήση τεχνικών ψηφιακής επεξεργασίας σήματος και μηχανικής μάθησης / Emotion recognition from speech using digital signal processing and machine learning techniquesΚωστούλας, Θεόδωρος 28 February 2013 (has links)
Η παρούσα διδακτορική διατριβή πραγματεύεται προβλήματα που αφορούν το χώρο της τεχνολογίας ομιλίας, με στόχο τη αναγνώριση συναισθημάτων από ομιλία με χρήση τεχνικών ψηφιακής επεξεργασίας σήματος και μηχανικής μάθησης. Πιο αναλυτικά, στα πλαίσια της διατριβής προτάθηκαν και μελετήθηκαν καινοτόμες μέθοδοι σε μια σειρά από εφαρμογές που αξιοποιούν σύστημα αναγνώρισης συναισθηματικών καταστάσεων από ομιλία. Ο βασικός στόχος των μεθόδων ήταν η αντιμετώπιση των προκλήσεων που παρουσιάζονται όταν ένα σύστημα αναγνώρισης συναισθηματικών καταστάσεων καλείται να λειτουργήσει σε πραγματικές συνθήκες, με αυθόρμητες αντιδράσεις, ανεξαρτήτως ομιλητή.
Πιο συγκεκριμένα, στα πλαίσια της διατριβής, αξιολογήθηκε η συμπεριφορά ενός συστήματος αναγνώρισης συναισθημάτων σε προσποιητή ομιλία και σε διαφορετικές συνθήκες θορύβου, και συγκρίθηκε η απόδοση του συστήματος με την υποκειμενική αξιολόγηση των ακροατών. Επιπλέον, περιγράφηκε ο σχεδιασμός και η υλοποίηση βάση δεδομένων συναισθηματικής ομιλίας, όπως αυτή προκύπτει από την αλληλεπίδραση μη-έμπειρων χρηστών με ένα διαλογικό σύστημα και προτάθηκε ένα σύστημα το οποίο εντοπίζει αρνητικές συναισθηματικές καταστάσεις, στο ανεξάρτητου ομιλητή πρόβλημα, με χρήση μοντέλου Γκαουσιανών κατανομών. Η προτεινόμενη αρχιτεκτονική συνδυάζει παραμέτρους ομιλίας χαμηλού και υψηλού επιπέδου και εφαρμόζεται στα πραγματικά δεδομένα. Επίσης, αξιολογήθηκε και υλοποιήθηκε η πρακτική εφαρμογή ενός συστήματος αναγνώρισης συναισθημάτων βασισμένου σε οικουμενικό μοντέλο Γκαουσιανών κατανομών σε διαφορετικούς τύπους δεδομένων πραγματικής ζωής. Ακόμα, παρουσιάστηκε μια πρωτότυπη αρχιτεκτονική κατηγοριοποίησης για αναγνώριση συνυπαρχόντων συναισθημάτων από ομιλία προερχόμενη από αλληλεπίδραση σε πραγματικά περιβάλλοντα. Σε αντίθεση με γνωστές προσεγγίσεις, η προτεινόμενη αρχιτεκτονική μοντελοποιεί τις συνυπάρχουσες συναισθηματικές καταστάσεις μέσω της κατασκευής μιας πολυσταδιακής αρχιτεκτονικής κατηγοριοποίησης. Τα πειραματικά αποτελέσματα που διενεργήθηκαν υποδεικνύουν ότι η προτεινόμενη αρχιτεκτονική είναι πλεονεκτική για τις συναισθηματικές καταστάσεις που είναι πιο διαχωρίσιμες, γεγονός που οδηγεί σε βελτίωση της συνολικής απόδοσης του συστήματος. / In this doctoral dissertation a number of novel approaches were proposed and evaluated in different applications that utilize emotion awareness. The major target of the proposed methods was facing the difficulties existing, when an emotion recognition system is asked to operate in real-life conditions, where human speech is characterized by spontaneous and genuine formulations.
In detail, within the present dissertation, the performance of an emotion recognition system was evaluated, initially, in acted speech, under different noise conditions, and this performance was compared to the one of human listeners. Further, the design and implementation of a real world emotional speech corpus is described, as this results from the interaction of naive users with a smart home dialogue system. Moreover, a system which utilizes low and high level descriptors was suggested. The suggested architecture leads to significantly better performance in some working points of the integrated system in the dialogue system. Furthermore, we propose a novel multistage classification scheme for affect recognition from real-life speech. In contrast with conventional approaches for affect/emotion recognition from speech, the proposed scheme models co-occurring affective states by constructing a multistage classification scheme. The empirical experiments performed indicate that the proposed classification scheme offers an advantage for those classes that are more separable, which contributes for improving the overall performance of the affect recognition system.
|
Page generated in 0.0607 seconds