1 |
Нелинейные стохастические системы в зонах порядка и хаоса: математическое моделирование, анализ и управление: автореферат диссертации на соискание ученой степени доктора физико-математических наук : 05.13.18Башкирцева, И. А. January 2020 (has links)
No description available.
|
2 |
Нелинейные стохастические системы в зонах порядка и хаоса: математическое моделирование, анализ и управление: диссертация на соискание ученой степени доктора физико-математических наук : 05.13.18Башкирцева, И. А. January 2020 (has links)
No description available.
|
3 |
Исследование стохастической модели нейронной динамики : магистерская диссертация / Analysis of stochastic model of neuron dynamicsАсламов, Г. С., Aslamov, G. S. January 2015 (has links)
В работе рассматривается дискретная нейронная модель, введенная впервые Рульковым Н.Ф., которая хорошо отражает быстро-медленную динамику нейрона. В работе проводится исследование устойчивости точек покоя и предельных циклов модели Рулькова к случайным возмущениям. В первой части изучаются точки покоя и циклы детерминированной одномерной модели, исследуется их устойчивость и проведен бифуркационный анализ. Во второй части анализируется поведение аттракторов этой модели под влиянием случайных возмущений. В третьей части проведен анализ расширенной двумерной модели, построены бифуркационные диаграммы и фазовые портреты, проведен анализ устойчивости. / This paper considers a discrete neural model pioneered by Rulkov N.F. This model clearly reflects the fast-slow dynamics of the neuron. In this paper, we study the stability of equilibrium points and limit cycles of Rulkov model to random perturbations. In the first part, we study equilibria and cycles of deterministic one-dimensional model, investigate stability and carry out the bifurcation analysis. In the second part, we analyze the behavior of the attractors under the influence of random perturbations. In the third part, the bifurcations and phase portraits of extended two-dimensional model are studied, and stability analysis is carried out.
|
4 |
Исследование стохастической динамики в моделях биохимической реакции : магистерская диссертация / Research of stochastic dynamics in models of biochemical reactionЗайцева, С. С., Zaitseva, S. S. January 2020 (has links)
В работе изучаются три нелинейных модели, предложенных Альбертом Голдбетером для описания ферментативной реакции в живой клетке. Математически эти нелинейные модели интересны своей быстро-медленной динамикой, автоколебаниями канардового типа, крайней неоднородностью детерминированных фазовых портретов, большой вариабельностью и сосуществованием динамических режимов. В этих условиях даже небольшие случайные возмущения существенно изменяют динамику системы и индуцируют такие феномены, как стохастическая возбудимость, мультимодальность, фантомный аттрактор и переходы от порядка к хаосу. Проведенное исследование данных моделей дает понимание основных механизмов этих явлений с помощью методов численного и статистического анализа, а также теоретического подхода, основанного на функции стохастической чувствительности и методе доверительных областей. / The work examines three nonlinear models proposed by Albert Goldbeter to describe the enzymatic reaction in a living cell. Mathematically, these nonlinear models are interesting for their slow-fast dynamics, canard-type self-oscillations, extreme inhomogeneity of deterministic phase portraits, great variability and coexistence of dynamic modes. Under these conditions, even small random perturbations significantly change the dynamics of the system and induce such phenomena as stochastic excitability, multimodality, phantom attractor, and transitions from order to chaos. The study of these models provides an understanding of the main mechanisms of these phenomena using methods of numerical and statistical analysis, as well as a theoretical approach based on the stochastic sensitivity function and the method of confidence domains.
|
5 |
Анализ стохастических аттракторов модели Ферхюльста с запаздыванием : магистерская диссертация / Analysis of stochastic attractors of Verhulst model with delayЕкатеринчук, Е. Д., Ekaterinchuk, E. D. January 2015 (has links)
We investigate attractors of the Verhulst model with delay under the influence of random perturbations.
In this work, we study dynamic regimes and bifurcations for the deterministic discrete model in zones of stable equilibria, closed invariant curves and discrete cycles. Here, a stability level of attractors is studied by Lyapunov exponents. Transformations of the closed invariant curve that appears as a result of Neimark-Sacker bifurcation, were analyzed via the rotation number and angular density.
A parametric analysis of stochastically forced regular attractors of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is described by confidence domains. The phenomenon of noise-induced transitions in a zone of discrete cycles is discussed. / Мы исследуем аттракторы модели Ферхюльста с запаздыванием под влиянием случайных возмущений. В работе мы изучаем динамические режимы и бифуркации для детерминированной дискретной модели в зонах устойчивых равновесий, замкнутых инвариантных кривых и дискретных циклов. Исследована устойчивость регулярных аттракторов. Замкнутая инвариантная кривая, которая появляется в результате бифуркации Неймарка–Сакера, анализируется с помощью числа вращения и секторной плотности. Параметрический анализ стохастически возмущенных регулярных аттракторов этой модели выполняется с помощью техники функции стохастической чувствительности. Пространственное распределение случайных состояний стохастических аттракторов описывается с помощью доверительных областей. Наблюдается явление индуцированных шумом переходов в зоне дискретных циклов.
|
6 |
Исследование стохастической модели иммуно-опухолевой динамики в условиях химиотерапии : магистерская диссертация / Modeling and analysis of a stochastic model of tumor-immune dynamics under ChemotherapyЧухарева, А. А., Chukhareva, A. A. January 2022 (has links)
В данной магистерской диссертации рассматривается нелинейная модель взаимодействия иммунных и опухолевых клеток под воздействием химиотерапии. Данная модель является модификацией уже известной модели Кузнецова, в которой отсутствует лечение. В работе был проведен бифуркационный анализ в зависимости от коэффициента интенсивности лечения. В ходе анализа было выявлено три характерных состояния системы: "активная опухоль", "спящая опухоль" и "нулевая опухоль". Для равновесных и автоколебательных режимов найдены параметрические зоны сосуществования и определены сепаратисты, разделяющие бассейны соответствующих аттракторов. Найдены оценки параметра интенсивности химиотерапии, при котором возможно как удержание системы в режиме «спящей̆» опухоли, так и ее полное подавление. Для стохастической̆ модели описаны сценарии результатов воздействия случайных возмущений на режимы динамического взаимодействия иммунных и опухолевых клеток. Исследованы условия, при которых индуцированные шумом переходы играют позитивную роль, приводя к резкому сокращению опухолевых клеток. / We study a two-dimensional model of the dynamical interaction of immune and tumor cells under chemotherapy. This model is a modification of the well-known model which was studied by Kuznetsov but without treatment. A bifurcation analysis of the deterministic model was carried out depending on the parameter of the intensity of chemotherapy. It has been shown that the system admits three characteristic states: "active", "dormant", and "zero" tumor. For this multistable system, a description of the equilibrium and self-oscillating modes is given, and the basins of coexisting attractors are determined. We have found estimates of the doses of chemotherapy to keep tumor in the "dormant" regime or to suppress it completely.
For the stochastic model, parametric estimates of the probability of transitions between the "active" and "dormant" or "zero" tumor modes were obtained, as well as the conditions under which random disturbances play a positive role, leading to a sharp reduction in the population of tumor cells.
|
7 |
Электрохимические катализаторы окисления глюкозы на основе органических комплексов рутения (III) и никеля (II) : магистерская диссертация / Electrochemical catalysts for glucose oxidation based on organic complexes of ruthenium (III) and nickel (II)Бобаренко, А. В., Bobarenko, A. V. January 2021 (has links)
В настоящей работе для электрохимического определения глюкозы предложены электрохимические катализаторы на основе органических комплексов никеля (II) и рутения (III) в присутствии карбоксилизированных многостенных углеродных нанотрубок и полиэтилеимина. Исследована каталитическая активность комплексов рутения (III) и никеля (II) при их раздельном и совместном присутствии на рабочем электроде в электрохимическом окислении глюкозы. Описан алгоритм проведения процедуры электрокаталитического определения глюкозы с использованием модифицированных электродов. Рассчитаны аналитические характеристики модифицированных электродов для электрохимического определения глюкозы. Выбран модификатор с оптимальными характеристиками, с наивысшей чувствительностью. / In this work, for the electrochemical determination of glucose, we propose electrochemical catalysts based on organic complexes of nickel (II) and ruthenium (III) in the presence of carboxylated multi-walled carbon nanotubes and polyethyleneimine. The catalytic activity of the complexes of ruthenium (III) and nickel (II) was investigated in the case of their separate and joint presence on the working electrode in the electrochemical oxidation of glucose. An algorithm for carrying out the procedure for electrocatalytic determination of glucose using modified electrodes is described. The analytical characteristics of the modified electrodes for the electrochemical determination of glucose are calculated. The selected modifier with optimal characteristics, with the highest sensitivity.
|
Page generated in 0.0275 seconds